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Abstract 

 

In 1695 the theory of fractional calculus was introduced, 

but it only developed as a pure mathematical branch. 

Currently several research groups have focused on the 

control, the implementation of filters, PID controllers, 

synchronization, the implementation of circuits of chaotic 

systems of fractional order, etc. Currently, the number of 

applications of fractional calculus is increasing rapidly, 

these mathematical phenomena have allowed us to 

describe and model a real object more accurately than the 

classical "integer" methods. Along with the development 

of the fractional calculation, it was shown that many 

fractional-order nonlinear dynamic systems behave in a 

chaotic manner. This is the type of non-linear systems that 

are addressed in this research topic with the focus on 

derivatives of arbitrary order, where numerical 

simulations of chaotic behavior are presented in non-

linear, fractional-order autonomous models. The case 

studies are six chaotic oscillators of fractional order; The 

systems of Lorenz, Rӧssler, Financiero, Lui, Chen and Lü, 

whose attractors are obtained by applying the definitions 

of the Grünwald-Letnikov definitions and the predictive 

corrective method of Adams-Bashforth-Moulton.  

 

 

 

Caos, Sistemas de orden fraccional, Osciladores 

Resumen 

 

En 1695 se introdujo la teoría del cálculo fraccional, pero 

solo se desarrolló como una rama matemática pura. 

Actualmente varios grupos de investigación se han 

enfocado en el control, la implementación de filtros, 

controladores PID, la sincronización, la implementación 

de circuitos de sistemas caoticos de orden fraccional, etc. 

En la actualidad, el número de aplicaciones de cálculo 

fraccional crece rápidamente, estos fenómenos 

matemáticos han permitido describir y modelar un objeto 

real de manera más precisa que los métodos clásicos 

"enteros". Junto con el desarrollo del cálculo fraccional, se 

demostró que muchos sistemas dinámicos no lineales de 

orden fraccionario se comportan de manera caótica. Este 

es el tipo de sistemas no lineales que se abordan en este 

tema de investigación con el enfoque en las derivadas de 

orden arbitrario, donde se presentan las simulaciones 

numéricas del comportamiento caótico en modelos 

autónomos no lineales de orden fraccional. Los casos de 

estudio son seis osciladores caóticos de orden fraccional; 

Los sistemas de Lorenz, Rӧssler, Financiero, Lui, Chen y 

Lü, cuyos atractores se obtienen aplicando las 

aproximaciones de las definiciones de Grünwald-Letnikov 

y el método predictor corrector de Adams-Bashforth-

Moulton. 
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Introduction 

 

With the development of fractional calculus and 

chaos theory, chaotic systems of fractional order 

have become a subject of study to assess their 

characteristics, design them with analog and 

digital electronics, and propose applications [1]. 

Models of fractional order systems allow 

describing and modeling a real object more 

accurately than using classic "integer" methods.  

 

The biggest difference between the 

models of fractional orders and of whole order is 

that those of fractional order depend on the 

history of the system, since they have memory 

[2]. That is why traditional numerical methods 

must adapt or propose new methods to simulate 

oscillators of fractional order [3-7]. 

 

Approximation of fractional order systems 

 

Fractional calculation is a generalization of 

integration and differentiation to the 

fundamental operator of non-integer order 𝐷𝑎 𝑡
𝑞
 

described in (1), where a and t are the limits of 

the operation and 𝑞 ∈ 𝑅. In this way, the 

numerical calculation of the derivatives of 

fractional order are made with approximations 

and in this work the definition of Grünwald-

Letnikov (G-L) [1,3], described in (2) is applied, 

 

𝐷𝑎 𝑡
𝑞 = {

𝑑𝑞

𝑑𝑡𝑞 ,             q > 0,

1,                 q = 0,

∫ (𝑑𝜏)𝑞 ,      q
𝑡

𝑎
< 0.

                   (1) 

 

𝐷(𝑘−𝐿𝑚/ℎ) 𝑡𝑘

𝑞
𝑓(𝑡) ≈

1

ℎ
𝑞 ∑ (−1)𝑗 (

𝑞
𝑗 ) 𝑓(𝑡𝑘−𝑗)𝑘

𝑗=0     (2) 

 

Where 𝐿𝑚 is the memory length, 𝑡𝑘 =
𝑘ℎ,  ℎ is the step size of the calculation and 

(−1)𝑗 (
𝑞

𝑗
)  are the binomial coefficients denoted 

by 𝑐𝑗
(𝑞)

(𝑗 = 0,1, . . . ). The following expression 

can be used for its calculation [4]: 

 

𝑐0
(𝑞)

= 1,  𝑐𝑗
(𝑞)

= (1 −
1+𝑞

𝑗
) 𝑐𝑗−1

(𝑞)
         (3) 

 

Then, the general numerical solution of 

the fractional differential equation 𝐷𝑎 𝑡
𝑞

𝑦(𝑡) =

𝑓(𝑦(𝑡), 𝑡), can be expressed as 

𝑦(𝑡𝑘) = 𝑓(𝑦(𝑡𝑘), 𝑡𝑘)ℎ𝑞 − ∑ 𝑐𝑗
(𝑞)

𝑦(𝑡𝑘−𝑗)𝑘
𝑗=𝑣     (4) 

 

For the term of memory expressed by the 

summation, the principle of "short memory" can 

be used. Then the lower index of the sums in the 

relationships (4) will be 𝑣 = 1 for 𝑘 < (𝐿𝑚/ℎ) 

y 𝑣 = 𝑘 − (𝐿𝑚/ℎ) for 𝑘 > (𝐿𝑚/ℎ), or without 

using the principle of short memory, v = 1 is 

made for all k. 
 

Obviously, truncating the memory length 

implies an inaccuracy. If 𝑓(𝑡) ≤ 𝑀,  The 

following estimate can be established to 

determine the memory length 𝐿𝑚, providing the 

required accuracy 𝜀: 

 

𝐿𝑚 ≥ (
𝑀

𝜀|𝛤(1−𝑞|
)

1/𝑞
                              (5) 

 

An evaluation of the effect of short 

memory and the convergence ratio of error 

between short and long memory are described in 

[7]. 

 

For the numerical simulation of the 

fractional order system, a method based on the 

predictor-corrector scheme of type ABM [4] has 

also been proposed, the method is based on the 

fact that the fractional differential equation 

𝐷𝑡
𝑞

𝑦(𝑡) = 𝑓(𝑦(𝑡), 𝑡), 𝑦0
(𝑘)

, 𝑘 = 0,1, . . . , 𝑚 − 1 is 

equivalent to the integral volterra equation 

 

𝑦(𝑡) = ∑ 𝑦0
(𝑘) 𝑡𝑘

𝑘!

[𝑞]−1
𝑘=0 +

1

Γ(𝑞)
∫ (𝑡 − 𝜏)𝑞−1𝑓(𝜏, 𝑦(𝜏))𝑑𝜏.

𝑡

0
      (6) 

 

Discretizing (6) to 𝑡𝑛 = 𝑛ℎ (𝑛 =
0,1, . . . , 𝑁), ℎ = 𝑇𝑠𝑖𝑚/𝑁 and using the principle 

of short memory as in [8] the numerical 

approximation of the solution is obtained 𝑦(𝑡𝑛) 

and the order of precision is preserved. The 

corrective scheme is shown in (7). 

 

𝑦ℎ(𝑡𝑛+1) = ∑
𝑡𝑛+1

𝑘

𝑘!

𝑚−1

𝑘=0

𝑦0
(𝑘)

+
ℎ

𝑞

Γ(𝛼 + 2)
𝑓(𝑡𝑛+1, 𝑦ℎ

𝑝
(𝑡𝑛+1)) 

 

+
ℎ

𝑞

Γ(𝛼+2)
∑ 𝑎𝑗,𝑛+1𝑓(𝑡𝑗 , 𝑦𝑛(𝑡𝑗)),𝑛

𝑗=0                   (7) 

 

Where 

 

𝑎𝑗,𝑛+1 = {
𝑛𝑞+1 − (𝑛 − 𝑞)(𝑛 + 1)𝑞 ,                             ,

(𝑛 − 𝑗 + 2)𝑞+1 + (𝑛 + 𝑗)𝑞+1 + 2(𝑛 − 𝑗 + 1)𝑞+1, 
1,                                                               

 

 

𝑎𝑗,𝑛+1 = {

 si j=0,
 si 1 ≤ 𝑗 ≤ 𝑛,
 si j=n+1.

                    (8) 
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As shown in [1], both numerical methods 

described in the time domain; GL and ABM 

have approximately the same order of precision 

and a good match of numerical solutions. 

 

Fractional Systems Stability 

 

The stability of nonlinear systems of fractional 

order is very complex and different from the 

linear system of fractional order [3]. The main 

difference is that, for a non-linear system, it is 

necessary to investigate the stationary states by 

evaluating (5), that is, the system's equilibrium 

points  𝐸∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗). 

 

𝐷𝑎 𝑡
𝑞𝑓(𝑡) = 𝑓(𝑥) = 0                         (11) 

 

According to the stability theorem 

defined in [8], the equilibrium points are 

asymptotically stable for a commensurate 

system, that is 𝑞1 = 𝑞2 = 𝑞3 = 𝑞𝑛 ≡ 𝑞 if all 

own values 𝜆1, (𝑖 = 1,2, . . . , 𝑛) of the Jacobian 

matrix 𝐽 = ∂𝑓/ ∂𝑥, where 𝑓 = [𝑓1, 𝑓2, . . . , 𝑓𝑛]𝑇 , 
evaluated at break-even points 𝐸∗, satisfies the 

condition [10]:   

 

| 𝑎𝑟𝑔( eig(𝐽))| = | 𝑎𝑟𝑔( 𝜆𝑖| > 𝑞
𝜋

2
, 𝑖 = 1,2, . . . , 𝑛.    (12) 

 

 To determine the stability of a fractional 

order system considered immeasurable, that is 

𝑞1 ≠ 𝑞2. . . ≠ 𝑞𝑛 and assuming that m is the LCM 

of the denominators 𝑢𝑖 of 𝑞𝑖, where 𝑞𝑖 = 𝑣𝑖/𝑢𝑖 , 
𝑣𝑖 , 𝑢𝑖 ∈ 𝛧+ for 𝑖 = 1,2, . . . , 𝑛 and 𝛾 = 1/𝑚, the 

system is asymptotically stable if | 𝑎𝑟𝑔( 𝜆)| >

𝛾
𝜋

2
. For all the roots of \ lambda in the following 

equation 

 

𝑑𝑒𝑡( 𝑑𝑖𝑎𝑔([𝜆𝑚𝑞1𝜆𝑚𝑞2 . . . 𝜆𝑚𝑞𝑛]) − 𝐽) = 0  (13) 

 

The condition for systems derived from 

an immeasurable order is 

 

𝑞 >
2

𝜋
atan (

|𝛽𝑖|

𝑞𝑖
) , 𝑖 = 1,2             (14) 

 

This condition can be used to determine 

the minimum order for which a nonlinear system 

can generate chaos [10]. 

 

Simulation of Chaotic Attractors 

 

In this work the chaotic systems of fractional 

order of: Lorenz (15), Rӧssler (16), Financial 

(17), Lui (18), Chen (19) and Lü (20) are 

calculated and simulated.  

 

Where 𝑥, 𝑦, 𝑧 are the state variables and 

0 < 𝑞1, 𝑞2, 𝑞3 < 1 It is the fractional order. The 

systems are represented by nonlinear differential 

equations because they present multiplication of 

variables in one or more equations. 

 

{

𝐷𝛼1𝑥 = 𝜎(𝑦 − 𝑥),

𝐷𝛼2𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦,

𝐷𝛼3𝑧 = 𝑥𝑦 − 𝛽𝑧,
 

(15) 

{

𝐷𝛼1𝑥 = −𝑦 − 𝑧,

𝐷𝛼2𝑦 = 𝑥 + 𝑎𝑦,

𝐷𝛼3𝑧 = 𝑏 + 𝑧(𝑥 − 𝑐),
 

(16) 

{

𝐷𝛼1𝑥 = 𝑧 + 𝑥(𝑦 − 𝑎),

𝐷𝛼2𝑦 = 1 − 𝑏𝑦 − |𝑥|,

𝐷𝛼3𝑧 = −𝑥 − 𝑐𝑧,

  

(17) 

{
𝐷𝛼1𝑥 = −𝑎𝑥 − 𝑒𝑦2,

𝐷𝛼2𝑦 = 𝑏𝑦 − 𝑘𝑥𝑧,

𝐷𝛼3𝑧 = −𝑐𝑧 + 𝑚𝑥𝑦,

 

(18) 

{

𝐷𝛼1𝑥 = 𝑎(𝑦 − 𝑥),

𝐷𝛼2𝑦 = 𝑐𝑥 − 𝑎𝑥 − 𝑥𝑧 + 𝑐𝑦,

𝐷𝛼3𝑧 = 𝑥𝑦 + 𝑏𝑧,
 

(19) 

{

𝐷𝛼1𝑥 = 𝑎(𝑦 − 𝑥),

𝐷𝛼2𝑦 = 𝑥𝑧 + 𝑐𝑦,

𝐷𝛼3𝑧 = 𝑥𝑦 − 𝑏𝑧,
 

(20) 

 
 

Table 1 shows the equilibrium points and 

their corresponding eigenvalues for stability 

analysis of the 6 chaotic systems of fractional 

order, where it is verified that, based on the signs 

of the eigenvalues and if they correspond to real 

or imaginary, it is observed that all the systems 

present asymptotic instability, chair node, chair 

focus, which are necessary to generate chaotic 

behavior. 

 
 Balance points Own values 

(1) 

1

2

3

(0,0,0),

( ( ), ( ), 1),

( ( ), ( ), 1).

E

E

E

    

    



   

     

 

1 2,3

1 2,3

1

3

2

13.8546,  0.0940 10.1945

13.8546,  0.0940 10.1945

22.82776,  11.8277,

2.6667

i

i

 

 

 



  

  





 

  

 

(2) 
2 2 2

1,2

4 4 4
, ,

2 2 2

c c ab c c ab c c ab
E

a a

      
  
 
 

 

1

2,3

1

2,3

 0.47595,

 0.007017 4.57910 

9.98800,

 0.249007 0.96808 

j

j











 

 

 

 

(3) 

1

2

3

(0,1/ ,0),

( ( ) / ,(1 ) / , (1/ ) ( ) / ,

( ( ) / ,(1 ) / ,(1/ ) ( ) / .

E b

E c b abc c ac c c c b abc c

E c b abc c ac c c c b abc c



      

      

 3

1

1

2,

2

3

 ,  - ,

 -0.

1

8.898979 8.898794

-0.7608747

0.3304373 .41196

,

  8

1,

j

 







 





 

 

(4) 
 

1

2

3

(0,0,0),

( ( / ( ), ( / ( ), / ),

( ( / ( ), ( / ( ), / ).

E

E bc hk bc hk b k

E bc hk bc hk b k





  

 

 
2

1

1

2 3

,3

1 5, 5

4.387767

0.4438837 3.346383 .

, ,

,

j

  





     



 

 

(5) 

1

2

3

(0,0,0),

( (2 , (2 ),2 ),

( (2 , (2 ),2 ).

E

E b c b c c

E b c b c c

  

  



   

     

 
1

2 3

3

1

1

2,

2,3

3 23.8359, 30.8359

18.4280

4.2140 14.8846 j,

18.4280

4.2140 14.8846 j,

, ,

,

,

  









    

 

 

 

 

 

(6) 

1

2

3

(0,0,0),

( , , ),

( , , ).

E

E bc bc c

E bc bc c





  

 
2 3

2,3

2

1

,3

1

1

3 20, 36

22.6516 1

,

.8258 13.6887

22.6516 1.8258 13.6887

, ,

, ,

,

j

j

  

 

 

    

   

   

 

 

Table 1 Balance points and their corresponding 

own values 

 

Next, we describe the way in which the 

Lorenz fractional system (15) is adapted to 

obtain the numerical solution of the system by 

applying the definition of Grünwald-Letnikov, 

similarly it is done for the other systems that are 

analyzed in this work 
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𝑥(𝑡𝑘) = (𝜎(𝑦(𝑡𝑘−1) − 𝑥(𝑡𝑘−1)))ℎ𝑞1 − ∑ 𝑐𝑗
(𝑞1)

𝑥(𝑡𝑘−𝑗)

𝑘

𝑗=𝑣

, 

 

 

𝑦(𝑡𝑘) = (𝑥(𝑡𝑘)(𝜌 − 𝑧(𝑡𝑘−1)) − 𝑦(𝑡𝑘−1))ℎ𝑞2

− ∑ 𝑐𝑗
(𝑞2)

𝑦(𝑡𝑘−𝑗)

𝑘

𝑗=𝑣

, 

𝑧(𝑡𝑘) = (𝑥(𝑡𝑘)𝑦(𝑡𝑘) − 𝛽𝑧(𝑡𝑘−1))ℎ𝑞3 − ∑ 𝑐𝑗
(𝑞3)

𝑧(𝑡𝑘−𝑗).

𝑘

𝑗=𝑣

 

 

Where 𝑇𝑠𝑖𝑚 is the simulation time, 𝑘 =
1,2,3, . . . , 𝑁, for 𝑁 = [𝑇𝑠𝑖𝑚/ℎ], and initial 

conditions 𝑥(0), 𝑦(0), 𝑧(0).  Binomial 

coefficients 𝑐𝑗
(𝑞1)

, ∀𝑖 They are calculated 

according to the relationship (3). To determine 

the minimum order of the fraction for which the 

Lorenz system is chaotic with the parameters 

(𝜎, 𝜌, 𝛽) = (10, 28, 8/3) the relationship (14) 

is used. In this case the minimum order 

commensurate for 𝑞1 = 𝑞2 = 𝑞3 is 𝑞 > 0.9941.  

In the case of immeasurable orders the stability 

at the equilibrium point can be investigated by 

the characteristic equation 𝑑𝑒𝑡( 𝜆𝛾I-J) = 0 for 

𝛾 = 1/𝑚 where 𝑚 is the LCM of the 

denominators of 𝑢𝑖, if 𝑞𝑖 = 𝑣𝑖/𝑢𝑖 , 𝑣𝑖 , 𝑢𝑖 ∈ 𝛧+ 

and the stability condition meets| 𝑎𝑟𝑔( 𝜆)| >
𝛾𝜋/2. 

 

All six systems were evaluated under the 

same integration step size conditions. ℎ = 0.005 

and simulation time 𝑇𝑠𝑖𝑚 = 100𝑠. The 

algorithms were programmed with Matlab 

R2019a, in double precision, the type of 

rounding error and machine epsilon of 2.2204e-

16, a list of parameters used for the simulation of 

the systems applying the GL and ABM algorithm 

are given in the Table 2.  

 
 

Coefficients 
C. I. 

𝑥(0), 𝑦(0), 𝑧(0) 
Fractional order 

(1) 𝜎=10, 𝜌= 28, 𝛽 = 8/3 (0.1, 0.1, 0.1) 𝛼1 = 𝛼2 = 𝛼3 = 0.995 

(2) a=0.5, b=0.2, c=10  (0.5,1.5,0.1) 𝛼1 = 0.9, 𝛼2 = 0.85, 𝛼3

= 0.9 
(3) a=1.0, b=0.1, c=1.0 (2,-1,1) 𝛼1 = 𝛼2 = 𝛼3 = 0.9  

(4) 𝑎 = 𝑒 = 1, 𝑏 = 2.5 (0.2,0,0.5) 𝛼1 = 1.0, 𝛼2 = 0.9, 𝛼3

= 0.8 
(5) a=35, b=3, c=28, d=-7 (-9,-5,14)| 𝛼1 = 𝛼2 = 𝛼3 = 0.9 

(6) a=36, b=3, c=20  (0.2,0.5,0.3) 𝛼1 = 0.98, 𝛼2 = 0.99, 𝛼3

= 0.98 

 

Table 2 Parameters used in the simulations of 

the 6 attractors of fractional order 

 

The results of the numerical simulation 

applying the definition of Grünwald-Letnikov 

are given in Figures 1 and 6 respectively, where 

the creation of a chaotic oscillator sensitive to 

the initial conditions is shown. 

 
 
Figure 1 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Lorenz system, applying 

GL 

 

 
 

Figure 2 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Rӧssler systems, 

applying G-L 

 

 
 
Figure 3 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Financial system, 

applying GL 
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Figure 4 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Liu systems, applying G-

L 
 

 
 
Figure 5 Results of the numerical simulation in 3D, 

xy, xz and yz planes respectively of the Chen system, 

applying G-L 

 

 
 
Figure 6 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Lü system, applying G-

L 

 

Similar to the previous one, the six 

chaotic systems of fractional order that are 

analyzed in this work for the Adams-Bashforth-

Moulton method are adapted with the Predictor-

Corrector scheme.  

 

This method is suitable because it only 

requires the initial conditions and for the 

unknown function it has a clear physical 

meaning since it is consistent with the 

Grünwald-Letnikov method, as well as the 

Caputo, Riemman Louville and FDE12 method.. 

 

 
 
Figure 7 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Lorenz system, applying 

ABM 

 

 
 
Figure 8 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Rӧssler system, applying 

ABM 

 

 
 
Figure 9 Results of the numerical simulation in 3D, xy, xz 

and yz planes respectively of the Financial system, 

applying ABM 
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Figure 10 Results of the numerical simulation in 3D, xy, 

xz and yz planes respectively of the Liu system, applying 

ABM 

 

 
 

Figure 11 Results of the numerical simulation in 3D, xy, 

xz and yz planes respectively of the Chen system, applying 

ABM 

 

 
 

Figure 12 Results of the numerical simulation in 3D, xy, 

xz and yz planes respectively of the Lü system, applying 

ABM 

 

Conclusions 

 

The application of the definition of Grünwald-

Letnikov and the corrective predictor method of 

Adams-Bashforth-Moulton to simulate chaotic 

oscillators of a fractional order have been shown. 

Stability conditions for commensurate and 

immeasurable systems were considered for this.  

 

The results of both methods provide the 

numerical approximations of the solution of the 

differential equations of fractional order, which 

implies that they can be implemented in 

hardware, one of the problems is that both are 

based on memory use, that is why as future work 

Implementation differences will be investigated 

using analog electronics such as FPAA's and 

digital as FPGA's. 
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