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Abstract

This paper considers a particular member of the class of stochastic (or randomized) unit root 

(STUR) process given by a simple bilinear process with a unit root. Under a certain 

reparameterization of the bilinear parameter, we use the recently proposed stochastic limit for this 

process to show the consistency of some commonly used nonparametric tests of the null hypothesis 

of stationarity against the alternative of a unit root under this form of nonstationarity, other than 

difference stationarity. Also, as an alternative to the existing pseudo T-ratio test for the null of a 

fixed unit root against a bilinear unit root, we propose a new testing procedure based on a simple 

modification of the KPSS test statistic that has the advantage to allow for more general forms of the 

deterministic component and that seems to have good size and power in finite samples to 

discriminate between a fixed (or linear) and a bilinear unit root. We derive the asymptotic null and 

alternative distributions and also we present an application to the series of log-prices of some stock 

market indexes with distinct time frequencies: IBEX 35, SP500, and Dow Jones Composite 

Average (daily), and CAC40 (weekly).

7 Introduction

In recent years there has been an active and increasing research on the generalization and extension 

of the concept of nonstationarity around the central case of a random walk, I(1) or fixed unit root 

process. Since the contributions of McCabe and Tremayne (1995), Leybourne, McCabe and 

Tremayne (1996), Leybourne, McCabe and Mills (1996) and Granger and Swanson (1997) 

introducing the so-called stochastic (or randomized) unit root processes, there has been many 

different contributions that consider this family of processes as a plausible alternative to the 

standard case of I(1) processes and as a possible explication to the rejection of the I(1) evidence in 

many empirical studies. In this paper we consider one particular member of this family of global 

nonstationary processes, that can be partially or locally stationary, that has very interesting 

properties and can be called the bilinear unit root (BLUR) process. This process is the nonstationary 

version of the diagonal bilinear process of order one, BL(1,0,1,1). We study the behaviour and 

properties (size and power) of several unit root and stationarity tests in the proximity of a perfect, or 

fixed, unit root given by a BLUR process with weak bilinear effect as has been defined and 

analyzed by Lifshits (2006). Given the main conclusions of this analysis, we propose a new semi-

nonparametric test statistic to distinguish between a fixed and a bilinear unit root, complementing 

the existing test proposed by Charemza et.al. (2005) but with a very different approach.

The structure of the paper is as follows. Section 7.2 introduces the general framework to our 

analysis, with initial attention to the distinction between the particular cases of stationarity and 

nonstationarity defined in the usual way as I(0) and I(1) processes. Section 7.3 introduces the case 

of a nonlinear nonstationary process, the bilinear unit root (BLUR) process, which falls within the 

class of STUR processes, but that with suitable normalization (weak BLUR) have a closed-form 

limiting representation that includes, as a particular case, the fixed unit root process. This section 

also includes the study of the consistency and asymptotic distribution under weak BLUR of some 

widely used semi-nonparametric residual-based tests for the null hypothesis of stationarity against 

the alternative of a fixed unit root, and we will show that these test statistics have nontrivial power 

against this form of nonstationarity. Section 7.4 introduces a new test procedure to consistently 

distinguish between a fixed and a stochastic unit root when the alternative is a (weak) BLUR 

process. Section 7.5 present a small application of this new test procedure. Finally, all the proofs are 

collected in the appendixes.
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7.2. A unified framework for semi-nonparametric residual-based tests for stationarity and for 

a fixed unit root

At a starting point we consider a generalized version of an unobserved components model for the 

observed time series (  tY , t N ) given by:

t t tY = d + ! " #$%$&&&$' (7.2.1)

t t t-1 t " (  )* (7.2.2)

Where 
t

d contains the deterministic trend components, while equation (7.2.2) considers a 

very general structure for the stochastic trend component 
t that determines the stochastic nature 

and memory properties (persistence) of 
t
Y .

43
t*Under stationarity of the sequence , we have that the 

condition for stationarity
44

t
Y(or I(0)) of is given by 

t( " ( for all t = 1, ..., n, with |!| < 1, while 

that if 
t( " # for all t = 1, ..., n, then 

t is a random walk (or I(1)) process driven by a stationary 

innovation process, with 
t
Y being nonstationary as well. There are some possible intermediate 

situations between I(0) and I(1) when 
t( varies (deterministically or randomly) between 1 and any 

value |!| < 1 through the whole sample, or even eventually when takes a value |!| > 1 which gives 

the explosive case. In the next section we consider this last situation described by a stochastic 

process 
t( , with 

tE[( + " # and "tVar[( + , which is generally called a stochastic (or randomized) 

unit root (STUR) process. For this reason, in what follows, we introduce the notion of a fixed unit 

root, as opposed to the case of a stochastic unit root process, in the standard I(1) case described 

above or, equivalently, when 
tVar[( + " , . This STUR specification will be the main topic in the 

next two sections of the paper, where will be considered as an alternative and a generalization to 

both stationarity and the fixed unit root cases. These STUR processes can arise naturally in 

economics and in finance. Gonzalo and Lee (1998) find that a stochastic autoregressive unit root 

characterizing the behaviour of the consumption can arise when assuming a quadratic utility in the 

solution to a problem of maximization of the utility function, while that Charemza et.al. (2005) find 

a theoretical motivation for the particular case of a bilinear unit root process (to be introduced and 

defined latter) from a simple generalization of a model of speculative behaviour characterizing the 

formation of the dividend-adjusted logarithms of prices of shares. Also, from the econometric point 

of view, the stochastic process (7.2.2) can generate a wide range of interesting processes for 

describing the behaviour of many economic and financial time series. In particular, under very 

general conditions on the sequence (
t( ,

t* ) we have that 
t-1 t t-1 t t-1 t-1 t t-1 t t-1E ( - " . /( - ). /* - " . /( - ,

and:

% % %

t-1 t t-1 t t-1 t t-1 t t-1Var ( - " . /* -). 0/( 1. /( -- + 

Where this conditional variance can be seen as a very general form of an ARCH-type model, 

that is a very widely used model for capturing some of the well known stylized facts of many 

economic and financial series.

                                                           
43

There are some other possible representations for this kind of models in this context, but they do not represent any 

fundamental difference from the one considered here. One possibility could be to introduce a separation between the 

sources of stationarity and nonstationarity, such as Yt = dt + #t, where #t = $t + ut with $t as in (2.1) and (ut, %t) a 

stationary sequence with Var[%t] = "%

*
2 , , so that %

*
2 " , corresponds to the stationarity case irrespective of the 

particular structure of $t.

44
Strictly speaking, we have that with dt 0 the sequence Yt is stationary around the deterministic trend component, dt, 

which can be called trend or deterministic stationarity.
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To complete the initial specification of our model, we next introduce two standard 

assumptions concerning the structure and behaviour of the deterministic and stochastic components 

t
d and 

t* .

Assumption 7.2 Deterministic component: We assume that the deterministic component is 

given by a pth-order polynomial trend function, that is &
t t,p pd =  ! , with &p

t,p = (1, t,..., t ) ,

&
p 0 1 p= (3 $3 $&&&$3 -! , and p " 0. This general formulation may accommodate many other possible 

forms of the trend function, such as incorporating a systematic (abrupt or gradual) break in the 

polynomial time trend, that is &
t t,p ptd = (4- ! with 

5! #5 ! %5(4- " )6 /4-! ! ! , where 
t6 /4- " 7/! 8 0'4+- is the 

usual indicating function and relative break-point  4 9 " /,$#- ,
45

n"

or even models with continuous 

change in the mean or multiple discontinuous changes. In any case, it is assumed that there exist a 

diagonal, non-stochastic and non-singular weighting matrix, , such that 't
n t,p p pn
· = ( ) (r)"    

uniformly over r  [0,1] as n'(, with 
p(r) a continuously differentiable function on [0,1], for all 

(t)1)/n < r * t/n, t = 1, ..., n. This assumption implies that the limiting terms in 
p(r) are of bounded 

variation. In the leading case of a pth-order polynomial trend function, p " 0, we have 
-1 -p

n = diag(1,n ,...,n )" , and & p p+1

p(r) = (1,r,...,r ) [0,1] .

Assumption 7.2 Error term: Let us consider that the zero mean error sequence 
t* satisfies 

either of the two following conditions:

(a) 
  t* $ ! is a stationary process with finite variance (% %

0*E[* + " 2 : and appropriate memory 

restrictions that ensure a necessary invariance principle, such as:

(

( (
(

+, ,
[nr]

1#;% %

t 0 k

t=1 k=-

n* </=- " 2 >/=-$ 2 " .0* * +           (7.2.3)

With W(r) a standard Brownian motion process, or:

(b.1)   t(* $ ! - are iid random variables with (% %

0*E[* + " 2 : , and (m

0E[|* ? + : for some m > 2.

(b.2)   t t(* $@ $ ! - , t 1 t-1F =2/* $&&&$* - , is a martingale difference sequence (MDS) with 

- (% %

t-1 t*E [* + " 2 for all t,  - (m

t Z t-1 tsup E [|* ? + a.s. form some m>2.

Remark 7.1 Under Assumption 2.b (with either b.1 or b.2), the result (7.2.3) follows 

trivially from the invariance principle of McLeish (1975), with the long-run variance (LRV) 

(
% %

*2 " 2 , while that Assumption 2.a covers many commonly used situations where it is introduced a 

particular set of conditions controlling both temporal dependence and heterogeneity in the 

innovation process. 

                                                           
45

Observe that this compact specification is equivalent to consider & &
! !$5 #5 !$5 %5

d = + (4- !  ! , with & &  
t,p t,p t

(4- " A6 /4- .

Another equivalent parameterization, that introduce the separation between both regimes, is given by considering 

& &
t t,p 1p t,p p

d = (4- ) /4- !  # , with 
t,p t,p t

(4- " A6 /4-  , *
t t
6 /4- " #16 /4- " 7/! 0'4+- , and 

5 #5 %5
= +# ! ! .
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Two of the most common set of conditions are the linear process (LP) (cf. Phillips and Solo 

(1992)) driven by iid or MDS innovations, and the strong mixing (see, e.g., Phillips (1987)) with 

mixing coefficients of size m/(m)2), for some m > 2. These two conditions allow for a wide variety 

of possible generating mechanisms for the sequence 
t* , including all Gaussian and many other 

stationary finite order ARMA models under very general conditions on the underlying errors. 

Also, Assumption 2b.2 determines that, with m > 4 and for all k " 1, then it is verified the 

following joint invariance principle for sample covariances:

. /
0 1 . /0 1+ 0 1
0 1 2 3
0 1
2 3

,

,

[nr]
1#;% % %

t*
* ,t=1
%[nr]

1#;% * B

t t+k

t=1

n (* 12 -
C > /=-

2 > /=-
n* *

With % % % %

* ! *C " .0/* 12 - + , and 
0W (r) ,

kW (r) two standard independent Brownian motion 

processes. Under a more general dependence setting, as in Assumption 2.a based on a LP with iid

innovations, it is verified a similar result, as can be seen in, e.g., Phillips and Solo (1992) and 

Ibragimov and Phillips (2008).

All the test procedures that we analyse in this paper are based on OLS detrended 

observations, that is:

ˆ ˆ ˆˆ & & &-v v -1t
t,p t t,p p,n t t,p p,n p t p n p,n pn
 " D 1 "  1 / 1 - "  1' / -0' / 1 -+ !  ! !  " ! ! (7.2.4)

With:

ˆ ,
n

jv -1 -1 -(1-v)

n p,n p n,p p jn

j=1

n ( - ) = n ( ) " ! ! $            (7.2.5)

The suitable normalized OLS bias of the estimator of the trend parameter vector 
p! in 

(7.2.1), with:

& &', 4
n 1

j j-1

n,p p p p p pn n
0

j=1

= n ( ) ( ) = (s) (s)ds$  $             (7.2.6)

Where convergence follows from Assumption 1 as n'( with
p > 0$ . The scaling factor v in 

the last expression of (2.4) can take the values 51/2 depending on whether we consider the 

stationarity or nonstationarity (fixed unit root) case. 

Remark 7.2 The case of no deterministic component, that is when 
td = 0 in (7.2.1), is also 

covered by this results simply by considering ˆ
t,p t t " D "  . When p = 0, we have the usual 

demeaned observations, while that p = 1 represents the case of demeaned and linearly detrended 

observations. Because the extension to the case of higher orders of the polynomial trend function 

does not pose any additional restriction, we will maintain this general formulation.

Next we consider three closely-related semi-nonparametric test statistics proposed to testing 

the null hypothesis of stationarity, 6t( " ( ! " #$&&&$' , with |!|<1, against the alternative of a fixed 

unit root, that is, 6t( " # ! " #$&&&$' .
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Each of them explode the fact that under the I(1) alternative we must expect a excessive 

fluctuation in the residual sequence (7.2.4), given that ˆ
t,p p " E / '- in this case, to consistently 

distinguish between these two types of behaviour. 

These test statistics are the following:

ˆ ˆ
ˆ

,
n

%

n,p n t,p%
t=1n,p n

1
M (q ) = V

n·F /G -
          (7.2.7)

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

7 8. / . /9 9
: ;0 1 0 1

2 3 2 39 9< =
, , ,

% %
n n n

%

n,p n t,p t,p n,p n t,p% %
t=1 t=1 t=1n,p n n,p n

1 1 1 1
VS (q ) = V - V = M (q ) - V

n·F /G - ' F /G - '
(7.2.8)

And:

ˆ ˆ ˆ
ˆn,p n t,p n,p

t=1,...,n
n,p n

t1KS (q ) = max V - V
F /G - '

                       (7.2.9)

With ˆˆ ˆ,1#;% 1#;% !

t,p t,p j=1 j,pV = n S = n the scaled partial sum of OLS residuals. The test statistic 

(7.2.7) is the widely known as KPSS statistic proposed by Kwiatkowski et.al. (1992), while (7.2.8) 

is the rescaled variance-ratio test statistic proposed by Giraitis et.al. (2003). This two test statistics 

measure a excessive fluctuation in the residual sequence through a Cramér-von Mises metric, while 

the CUSUM-type test statistic (7.2.9) is the one proposed by Xiao (2001) that uses the 

Kolmogorov-Smirnov measure of fluctuation. In these three cases, a rejection of the null hypothesis 

of stationarity is registered for large values of the estimated test statistic when compared with the 

proper critical values from its non-standard null limiting distributions. In (7.2.7)-(7.2.9) ˆ %

n,p nF /G - is a 

consistent estimator of the long-run variance of the sequence 
t under the null hypothesis of 

stationarity, usually a kernel nonparametric estimator of the form:

ˆ ˆ,
n

n

q
%

n,p n n n,p

k=-q

F /G - " H/B;G -I /B-             (7.2.10)

Where ˆ ˆˆ ,-1 n

n,p t=k+1 t,p t-k,pI /B- " '   is the k-lag sample residual autocovariance, 
n

q is the 

bandwidth parameter that must satisfy certain upper bounding condition when depends on the 

sample size, and w(·/·) is the kernel or weighting function
46

ˆ ( ('% 5 % % 1%

n,p n $F /G - 2 " 2 /# 1(-

. Under the stationarity assumption, and 

by standard application of the weak LLN, we have that whenever the 

sample size-dependent bandwidth parameter 
n

q verify the condition #;%1J

n pq = O (n ) , with 0 < a <

1/2, where the Op is used to cover the cases where it is estimated from data. We also consider, for 

purpose of comparison of the results in the next section, a test procedure of the reverse hypothesis, 

that is I(1) against I(0), that uses the same idea and information that the above stationarity tests. 

This is the Breitung’s (2002, 2003) test for a unit root based on a semi-nonparametric variance-ratio 

test statistic defined as:

ˆ-1

n,p n,pR = n R                     (7.2.11)

                                                           
46

For a more formal and complete treatment of the choice and combination of bandwidth and kernel functions in the 

context of stationarity tests see, e.g., Kurozumi (2002), Carrion-i-Silvestre and Sansó (2006), and Xiao and Lima (2007) 

among others.
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Where the original variance-ratio test statistic, ˆ
n,pR , is given by:

ˆˆ ˆ
ˆˆ

, ,
,

n n
% %

n,p t,p t,pn %
n,pt=1 t=1t,pt=1

1 1R = S = V
n·I /,-n· 

                 (7.2.12)

Which is closely-related to the KPSS test statistic through the relation ˆˆ ˆ
n,p n,p n n,p nR =4 /G -AK /G - ,

where ˆ ˆ, nq

n,p n k=1 n n,p4 /G - " #)% H/B;G -L /B- is the ratio of the long-run to short run variance estimators, 

with ˆ ˆ ˆ-1

n,p n,p n,pL /B- " I /,-I /B- the k-lag sample residual autocorrelation. The test statistic 
n,pR , that has 

the advantage that it does not requires any correction for autocorrelation, is pivotal in the sense that 

its asymptotic distribution under the assumption of a fixed unit root is free of nuisance parameters 

(see Breitung (2002) for more details). 

Given that 
n,pR converges asymptotically to zero under stationarity, the test rejects the null 

of a fixed unit root for a low estimated value of the test statistic. Finally, and to complement the 

results for all these more traditional test procedures, we consider the recently proposed test for 

covariance stationary by Xiao and Lima (2007). These authors argue that this test procedure 

preserves the same size and power properties that of existing similar tests, while that it has higher 

power in the presence of a changing unconditional variance, but this was only proved through a 

simulation experiment. To our knowledge, under the alternative of a fixed unit root, never has been 

determined its consistency rate and asymptotic distribution. For that reason, and for further 

comparative purposes, we also consider this additional test. Their test procedure is a generalization 

of the CUSUM-type test by Xiao (2001) given in (7.2.9) to the case of detecting a excessive 

fluctuation in the first two sample moments of the detrended process. To that end, the main focus of 

analysis is the behaviour of the scaled partial sum functional of the bivariate process &
t t t= ( $M -% ,

with % %

t t n, M " 1 2 , where ,% 1# ' %

n, N"# N2 " '  is the sample variance of the error process which under 

stationarity becomes the finite population variance, that is, % %

n, !2 " .0 + . Under stationarity and 

Assumption 2, the process , %
1#;% 0'=+

t=1 tn verifies an invariance principle with weak convergence to a 

bivariate Brownian process with covariance matrix > that is the long-run covariance matrix of % t
,

that is, '( ,1#;% '

t=1 tlim Var(n )%
n

. With this, an appropriate test statistic could be based on the sample 

version of the following generalized CUSUM-type statistic || ||
* *

,1#;% 1#;% B

n t=1 t
1 k n

C = max n& % given by:

ˆˆ ˆ ˆ|| ||
* * * *

,
k

1#;% 1#;%

n,p n n,p n n,p n t,p
1 k n 1 k n

t=1

C (q ) = max (k,q ) = max (q )nC ! ,
ˆ

ˆ
ˆ

 !
" #" #
$ %

&
 !"#[nr]

n,p !"#

t,p  !"#$
t=1 n,p

n S (r)
n =

n S (r)
!

Where ||·|| is any appropriate norm of vectors, ˆ ˆ ˆ, '! t,p t,p t,p= (% $ & , ˆˆ ˆ# #

t,p t,p n,p$ ' %  ( with 

ˆˆ &#  ! ) #

n,p j=1 j,p( ' ) % , and  ̂n,p n(q ) is the kernel nonparametric estimator of ( given by:

ˆˆ
ˆ

ˆ

 !
" #" #
$ %

#

n,p n n,p n

n,p n #

n,p n

* +, & - +, &
(q ) =

. +, &
 

Where ˆ #

n,p n* +, & is as in (7.2.10) above, with ˆ
n,p n- +, & and ˆ#

n,p n. +, & defined similarly by using 

the sequences ˆ ˆ
t,p t,p% $ and ˆ

t,p$ , respectively. Taking v = )1/2 in (7.2.4) and (7.2.5) under the fixed 

unit root assumption, 
t/ ' ! for all t = 1, ..., n, we then have that:
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* +

ˆˆ ˆ

, ,

'

'-

'

.
.

 !"#  !"#  !"#  !

n,p [nr],p [nr] p n p,n p

1
-1

p p p p
0

1
-1

p p p p
0

B (r) = n% ' ) %  +0&1) +  &2

B (r) = B(r) - (r) (s)B(s)ds

=( 3+0&  +0& +4&3+4&54 ' ( 3 +0&

" # $ $

" % "

" % "

(7.2.13)

With ˆ ˆ ˆ !"#

n,p t,p t,pB (r) = B = n% for t/n / r < (t+1)/n, t = 1, ..., n)1, which gives ˆ
[nr],p pV = O (n) , and 

ˆˆ ˆ& - . !  6"#  ! 1)02 0

[nr],p [nr],p t=1 t,p 0 pn V = n S = n B B (s)ds as n0,. Also, taking into account that 

 !"#  !"#  !"#

t t-k pn% ' ) % 78 +) & , for any k 1 1, then:

ˆˆ ˆ

ˆˆ ˆ

'

'

 !"#  !"#  !"#  !t-k
t-k,p t-k,p t-k p n p,n pn

 !"#  !  !"#  !"#t
t,p k p n p,n p p t,p pn

B = n% ' ) %  + &1) +  &2

= B +9 + &1) +  &278 +) & ' : 78 +) &

" # $ $

" # $ $
              (7.2.14)

Where ' t
k p n

9 + &" = 0 for p = 0, and ' -1t
k p n

9 + & ' 8+) &" for any p 1 1, so that:

ˆ ˆ ˆˆ

,-

& &

. .

n n
 !  !  ! #  !"#

n,p t,p t-k,p t,p p

t=k+1 t=1

1 1
# # #

p p
0 0

n; +<& ' ) : : ' ) : 78 +) &

B (s) ds =( 3 +4& 54

              (7.2.15)

For any |k| / qn. Also, from (2.13), we have that:

ˆ ˆˆ ˆˆ ) -& & .
n n 1

 !  !"# #  !  !"# # #  ! # # #

t,p t,p j,p t,p j,p p p
0

j=1 j=1

n$ ' +) % &  ) +) % & ' : ) : : +0&  : +4&54              (7.2.16)

And:

* +ˆ - . . . .
r 1 r 1

 #$ # # # #

n,p p p p p
0 0 0 0

n S (r) B (s) - B (a)da ds = B (s)ds -r B (s)ds             (7.2.17)

With this results, we can now formulate the following proposition that states the asymptotic 

distribution of all these test statistics under the fixed unit root assumption.

Proposition 7.2.1 Under the DGP (2.1)-(2.2), with 
t/ ' ! for all t = 1, ..., n, and Assumption 

2.a, we have that:

(a) ˆ ,- . .
1 1

 ! # # # #

n n,p n p p
0 0

(n·q ) ·* +, & => : +4& 54 ' =( 3 +4& 54

(b) * +ˆ - . . .
#

1 r 1
#

n n,p n p p p
0 0 0

(q /n)M (q ) M = W (s)ds dr/K· W (s) ds

(c) * + * +2 3ˆ - . . .
#-1

1 1 r
#

n n,p n p p p p
0 0 0

(q /n)VS (q ) VS = M - K· W (s) ds W (s)ds dr

(d) * +ˆ
/ /

- . . .
 !"#

1 r 1
!"# #

n n,p n p p p p
0 0 00 r 1

(q /n) KS (q ) KS = K· W (s) ds sup| W (s)ds -r W (s)ds|

(e) -n,p p pR R = K·M

And:

(f) ˆ 6"#

n,p n p n- +, & ' 8 +, ) & , ˆ# #

n,p n p n. +, & ' 8 +, ) &

* + * +ˆ ,- . . . .
# #

1 1 1 1
#  ! # # # ? # #

n n,p n p p p p
0 0 0 0

(n ·q ) ·. +, & => : +0&  : +4&54 50 ' =( 3 +0&  3 +4&54 5 r

(g) ˆ ˆ|| ||
/ /

-!"#  !"#

n n,p n n n,p n p
1 k n

(q /n) C (q ) = max (n/q ) (k,q ) CC
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Where .1

-1K = w(s)ds for any symmetric kernel with finite support, with the limiting 

distribution 
pC in (g) given by:

* + * +
1/ 2)

/ /

 !
" #
$ %

. . . .
#

1 1 r 1
# # # #

p p p p p
0 0 0 00 r 1

C = K· B (s) - B (a)da ds sup B (s) - B (a)da ds .

Proof. Results (a)-(e) follow from the use of equations (7.2.13)-( 7.2.15) and the application 

of the continuous mapping theorem (CMP)
47

 ̂n,p n(q )

, while that the result in (f) comes from (7.2.13) and 

(7.2.16) by using a similar development that in (7.2.14) and (7.2.15). Given the convergence rates in 

(a) and (f) for the components of the kernel estimator , under the fixed unit root assumption, 

it is dominated by the element ˆ#

n,p n. +, & , which gives:

ˆ
ˆ

 !
" #" #
$ %

 !  !"#

p p#  !

n n,p n #  ! #

n n,p n

O (n ) O (n )
(n q ) (q ) =

(n q ). +, &
 

With this and the use of (7.2.16) and (7.2.17) we have that:

ˆ
ˆ ˆ

ˆ

 !
" #" #
$ %

C 

 6"#

n,p!"#  ! #  !  !"#

n,p n n n n,p n 6"#  #$

n,p

n[n S (r)]
(r,q ) = (nq ) [(n q ) (q )]

n [n S (r)]

ˆ
ˆ

ˆ

4 5 !6 6
" #7 8" #6 6$ %9 :

 

 !"#  6"#

n,p!"# #  !  !"#

n n n,p n  #$

n,p

n [n S (r)]
= (n/q ) [(n q ) (q )]

n S (r)

Where the term between brackets is Op(1), with ˆ !"#  6"#  !"#

n,p p pn [n S (r)] = O (n ) = o (1) . This gives 

the consistency rate of !"#

n(n/q ) , which is the same as for the Xiao (2001) KS test given in (d). With 

this it is straightforward to show that:

ˆ ˆ|| ||
/ /

-!"#  !"#

n n,p n n n,p n p
1 k n

(q /n) C (q ) = max (n/q ) (k,q ) CC

With 
pC given above.

Remark 7.3 Note that all this limiting distributions (b)-(e) are free of nuisance parameters, 

under the assumption of a correct specification of the deterministic component, because the scale 

effect from the long-run variance ,
#

( in the numerator and denominator of the limits cancels. The 

limit distributions of the scaled stationarity tests depends on the kernel choice through the constant 

K, that takes value one in the case of the Bartlett kernel, which is the most often used in practice. 

Also, this results indicate the consistency rates of the stationarity tests under the alternative of a 

fixed unit root, which is (n/qn) for the KPSS and VS tests, and (n/qn)
1/2

for the KS and C tests. 
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A more detailed proof and additional results concerning the asymptotic distribution of these test statistics and of the 

test for covariance stationarity by Xiao and Lima (2007) under a fixed unit root is available in Afonso-Rodríguez 

(2012b).
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For this last testing procedure, and under the fixed unit root alternative to stationarity, the 

dominant term is the one corresponding to the partial sum of centered squared residuals, ˆ #$

n,pn S (r) ,

whose behaviour is intended to capture instabilities in the first two sample moments.

7.3 Semi-nonparametric residual-based tests for stationarity and for a fixed unit root under a 

weak bilinear unit root process

This section is concerned with the extension of the previous results to the case where equation 

(7.2.2), determining the structure of the stochastic trend component, is described as a particular 

member of the class of nonstationary random coefficient autoregressive (RCA) processes. 

Assuming that the sequence of random coefficients 
t/ in (7.2.2) can be decomposed as:

t 0 t/ ' @ 7 @                        (7.3.1)

With 
0@ a fixed real-valued coefficient and 

t@ a sequence of random variables, then 

t- ' A1BCD+/ &2 E F , and m

m t. ' A1G/ G 2 E ! for any m > 0 determine the necessary and sufficient 

conditions for strict stationarity and ergodicity and weak stationarity (existence of the mth-order 

noncentral moment), respectively, of the stochastic recurrence equation (2.2) (see, e.g., Nagakura 

(2009), and Afonso-Rodríguez (2012a)). The leading case here is when 1# # # #

# F H F@. ' @ 7A1@ 2 ' @ 7( !

for a given random sequence 
t@ such that 

tE[@ 2' F , and 1#

@( F , so that 
t% is not covariance 

stationary (while that it can preserve the strict stationary property depending on the distributional 

assumptions posed on the random sequence 
t@ ), so that it can partially behaves as a random walk 

through the full sample, being stationary for some periods, and even mildly explosive for others. In 

what follows we are concerning with a member of this family of nonstationary processes which is 

called a stochastic (or randomized) unit root (STUR) process when 
0@ ' ! , so that the 

autoregressive root is equal to 1 only on average, with the STUR process being stationary for some 

time, while it would be mildly explosive for some other time.
48

The fixed unit root process is obtained as a particular case when #

@( ' F . These arguments 

suggest the interest in the study of the size and power properties of unit root and stationarity tests, 

respectively, under nonstationarity of the STUR type. Some early studies on this topic can be found 

in Granger and Swanson (1997), McCabe and Smith (1998), Gonzalo and Lee (1998), and Yoon 

(2004), while more recently it can be cited Francq et.al. (2008) and Afonso-Rodríguez (2012b). 

Testing procedures for a STUR alternative to a fixed unit root process were developed by McCabe 

and Tremayne (1995), Leybourne, McCabe and Tremayne (1996), and Leybourne, McCabe and 

Mills (1996). One of the main difficulties for the analytic study of the effects of considering a 

STUR alternative is the lack of theoretical results about the possible application of the invariance 

principle to empirical process based on this kind of models. 
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Granger and Swanson (1997) introduce a very different STUR process, where 
t t

/ ' IJK+@ & , with 
t

@ a strictly 

stationary and Gaussian AR(1) process. With this assumptions, it follows that #

t t p t
/ ' !7 @ 78 +@ & , which implies that 

both specifications are equivalent up to the term #

p t
O (@ & . Despite the relationship between these both specifications, they 

present some differences so that we can call this latter case as the exponential STUR process, while that (3.1) with ;0 =

1 might be called the additive STUR process.
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McCabe and Smith (1998) introduce the concept of local heteroskedastic integration by 

considering that the random sequence 
t@ may be factorized as < --

t t@ ' ) $ , < 1 0, with 
t$ a

stationary sequence and = > 0 an appropriate power factor needed to obtain an approximate 

representation of the random coefficients 
t t/ ' !7 @ which generates a local (first-order) 

approximation of the STUR process about the fixed unit root case. Also, by assumption, they rule 

out the case where the random terms 
t@ and 

tL may be correlated, which exclude some interesting 

alternatives from their analysis as the first-order Markovian bilinear unit-root process proposed by 

Francq et.al. (2008). 

Taylor and van Dijk (2002) develop an extensive set of Monte Carlo experiments to study 

the power of these test statistics against different forms of nonstationarity other than difference 

stationarity which display a greater degree of persistence. Their general conclusion is that these 

tests against STUR behaviour only appear to display power against processes with a higher degree 

of persistence than the fixed unit root process, and not against processes with lower persistence, 

even where those processes are also non-stationary. For that reason, as well as for having interesting 

economic interpretations and its empirical relevance, we consider the analysis of the stochastic 

bilinear (diagonal) unit root (BLUR) process
49

t/when in (7.2.2) is given by:

t t t-1/ ' / + & ' !7/L&                        (7.3.2)

Where '= (1,/&& , with '
0 = (1,0)& indicating the fixed unit root case. With this, the complete 

specification of the stochastic trend component 
t% is the following:

t t t-1 t t-1 t-1 t% ' / + &% 7 L ' +!7/L &% 7 L H ' !MNNNM)&                      (7.3.3)

Charemza et.al. (2005) first introduce this process as being derived from a model of 

speculative behaviour and proved that, under Assumption 2.b, #

tLE[% 2 ' /( +H  !& , #

tLE[9% 2 ' /( ,and 

># # # # # H # # ? # ?

tL F L L LVar[9% 2 ' +O( 7/ A1 2&+!7/ ( &  ?H/ ( 7P/ ( #

L ?( ' 8+H& for any value ? 1 0, which seems 

to make this model not suitable as a close alternative to I(1) series. These authors were mostly 

concerned with testing the assumption ? = 0 against the one-sided alternative ? > 0, giving rise to 

the so-called ?-test through an extension of the Dickey-Fuller (DF) regression and DF-type test to 

this framework. In section 7.4 we review this test procedure, derive some new results for this test 

statistic and propose a new test procedure for testing the fixed-unit root against the BLUR 

alternative. In order to consider a plausible alternative to the fixed-unit root case, we next consider 

the BLUR model with a weak bilinear effect (in short, weak BLUR process) and what can be called 

the weak BLUR distribution, firstly proposed by Lifshits (2006). By introducing the normalization 
 !"#

n/ ' />) of the bilinear parameter, this model can now be interpreted as a local alternative to the 

fixed unit root case in finite samples because that, for a fixed value of ?, 0n/ F as 0 ,n .
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Francq et.al. (2008) also consider the case of a stochastic bilinear (subdiagonal) unit-root process which allows for 

stationary increments and in this sense is more closely related to the fixed unit root case. Particularly, they consider the 

error correction form of an AR(p+1) process, @ & @p

t t-1 k=1 k t-k t
9Q ' Q 7 9Q 7% , where the error term 

t
% follows a bilinear 

process of order q, BL(q), of the form & ;q

t k=1 k t-k t
% ' +!7 % &L . With a slight manipulation of these expressions, we have 

the following STUR form @ & @p

t 1 t t-1 k=1 k t-k t
Y = (1 + ( +@ L &&Q 7 9Q 7 R in which the possible dependence is modelled 

parametrically through the p lags of the first differences. Under appropriate conditions on the coefficients ;k, t
% is a 

centered non-correlated process (weak white noise), so that this STUR-type process becomes asymptotically 

indistinguishable from a fixed unit root.
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The next definition, which is based on Theorem 1 by Lifshits (2006), sets the weak limit 

distribution of this process.

Definition  7.3.1 Let the BLUR process in (3.3) with small a bilinearity coefficient, that is 

with '
n n= = (1,/ && & ,  !"#

n/ ' />) , ? > 0, error terms 
tL that follows Assumption 2.b, and define the 

scaled partial sum process of 
t,n t n t-1,n t% ' / + &% 7 L& as  !"#

n,/ HM)H (r) = n% , for (t)1)/n / r < (t/n), t = 1, ..., 

n. Then

- .
r # #

#L
n,/ / L / L L

/0

1 +/ ( 4
H (r) H (r) =( S +0& +53+4&  /( 54&7/( 0

S +4&
                     (7.3.4)

With # #

/ L LS +0& ' IJK+/( 3+4&  / ( 0"#& , and W(s) a standard Wiener process.

By using 
n/ ' / as in the above definition and the explicit form of 

tVar[9% 2 in Charemza 

et.al. (2005) it is immediate to show that this STUR process is asymptotically weakly stationary in 

first differences. Also, given that this fact is explicitly considered in the derivation of the limit 

diffusion process 
/H (r) in (7.3.4), we have that #

0LH (r) = B(r) =( 3+0& for ? = 0, #

/ LE[H (r)] =/( 0 (so 

that the weak BLUR process introduce a location displacement to the right of the limit distribution 

compared to that of the Brownian motion), and #  # # #

/ LE[H (r)] = 5/ 1IJK+/ ( 0&  !2 # ?

L ?/ ( 0 (see Liftshits 

(2006), p.4544). With these two moments it can be checked that 
/Var[H (r)] > 0 only for values of ?

below the upper limit of 
L1/(( 0& for any 0 < r / 1. Also, the first derivative of 

/Var[H (r)] with 

respect to ? is negative for values of ? below the upper limit of 
L1/(( 0& for any 0 < r / 1, so that it 

is a strictly decreasing function in ? for values ? A (0, 
L1/(( 0& ) which determines that this 

distribution becomes flat around the mean value. Thus, from (7.3.4) it is evident that this limiting 

distribution is a function of two parameters, ? and #

L( , where the error variance #

L( plays an 

important role not only in the scale of the distribution but also in the extent of the drift term #

L/( 0 .

Also, by using a second-order Taylor series expansion of 
/H (r) around ? = 0, it is possible to 

determine more precisely how this process depends on the Brownian motion 
LB(r) =( 3+0& as a 

function of the bilinear parameter ?:

B.
# #

r
# 6L

/ K
0

/ (
H (r) = B(r) +/++!"#&:+0& &  :+4&54 8 +/ &

#

Finally, by application of the concept of summability defined by Gonzalo and Pitarakis 

(2006) and Berenguer-Rico (2011)
50

, it is immediate to appreciate that this weak BLUR process is 

an asymptotic plausible alternative to the fixed unit root case, I(1) = S(1), because both processes 

are of the same order of summability. In order to make possible the comparison of the next results 

with what were obtained in section 2, we formulate a proposition that establish the invariance of the 

weak BLUR limit distribution when the error term from the bilinear equation is weakly dependent 

and, in particular, when follows a linear process.
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The concept of summability is a generalization of the order of integration of a stochastic process which is defined as 

follows. A stochastic process Xt with positive variance is said to be summable of order C, denoted as S(C), if 

& +!"#7T& 1)02

t=1 t t p
n L(n) (X -m ) = O (1) as n0,, where C is the minimum real number that makes this scaled partial sum process 

bounded in probability, with mt a deterministic sequence, and L(n) a slowly-varying function.
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Proposition 7.3.1 Let 
t tL ' U+V&W , with ,& j

j=0 jC(L) = c L , and ,& ,#

j=1 j ! " , where the error 

process 
t
u is given either by (a)  

#

t uu iid(0,$ % ,  # #

u 0$ & '() * " , with  m

t'(+) + * " , or (b) (
t
u ,

t
F ) is a 

MDS with respect to the information set !t kF =$,) -. /% ,  # #

t t-1 uE[u |F ] =$ " , and 

"  
 

m

t t-10)1 '(+) + +2 * "
t

a.s., for some m>2. Then, given the weak BLUR(1,1) process with 

#  n n= = (1,3 % , 456#

n3 & 7 3 , and 0$ % fixed, and if m % 4, then:

 &456#

n,3 /-7 3 3H (r) = n8 9 ,:% & $ ; ,:%                       (7.3.5)

With:

 
  '

r # #

3 3

30

1 +3 $ 0
; ,:% & < ,:% ,=>,0% 43$ =0%? 3$ :

< ,0%
                     (7.3.6)

And   
# #

3< ,:% & @A1,3$ >,0% 4 3 $ :6#% , where  
# # #

u$ & $ B,5% , and W(r) is a standard Wiener 

processes.

Proof. See Appendix A.

With these results, next proposition trivially states the limiting distributions of the residual-

based tests for stationarity against a fixed-unit root, and for the reverse hypothesis, that we 

introduce in section 7.2 under the alternative of a weak BLUR process by simply replacing all the 

functionals defined in terms of the Brownian motion process by the same expressions but in terms 

of the diffusion process  3 3H (r) =$ ; ,:% .

Proposition 7.3.2 Under the DGP (2.1)-(2.2), with the weak BLUR alternative given in 

Definition 7.3.1 and under the Proposition 7.3.2, we have that:

(a) ˆ  & ' '
1 1

45 # # # #

n n,p n3-1 3-1
0 0

(n·q ) ·C ,D % EF 9 ,0% =0 & E$ ; ,0% =0

(b) ˆ &n n,p n p(q /n)M (q ) M (3%

(c) ˆ &n n,p n p(q /n)VS (q ) VS (3%

(d) ˆ &56#

n n,p n p(q /n) KS (q ) KS (3%

And:

(e) &n,p p pR R (3% & EFG ,3%

Where
pM (3% ,

pVS (3% , and 
pKS (3% are as in Proposition 2.1 with 

pW (r) replaced by:

( )# #' '
-1

1 1

3-1 3 1 1 1 1 3
0 0

; ,:% & ; ,:% 4 ,:% ,0% ,0%=0 ,0%; ,0%=0! ! ! !                      (7.3.7)

Where 
3; ,:% is given in (3.6). For the components of the kernel estimator of the long-run 

covariance matrix in the Xiao and Lima (2007) test statistic we have the same divergence rates that 

under the fixed unit root alternative, with the limiting distribution given now by 
pC (3% as in:
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Proposition 2.1 with  
# # #

p pB (r) =$ > ,:% replaced by  
# # #

3-1 3-1H (r) =$ ; ,:% .

Remark 7.7.4 First of all it is clear from the definition of 
3; ,:% that for $ = 0 we get the 

results stated in Proposition 7.2.1 under the fixed unit root assumption. Second, from the definition 

of 
3; ,:% in (7.3.6) it is evident that all these limit distributions depend both on $, the pure bilinear 

effect, and the variance of the error process,  
#

$ (or #

H$ with weak white noise innovations), so that 

in strict sense are not free of nuisance parameters. Also, given that all these results are obtained 

with the same divergence rates of the original tests statistics that under the fixed unit root 

assumption it is not of application the usual consistency concept against this form of nonstationarity 

other that difference stationarity. In this case the behaviour is mainly determined by the value of the 

bilinear parameter $.

The next result states approximately the scale shift and, more importantly, the displacement 

to the right of 
pM (3% , as a function of the pure bilinear effect $, which determines the approximate 

power of the KPSS test and the source of size distortion for the variance-ratio test 
n,pR under the 

weak BLUR alternative.

Proposition 3.3 Given the limit distribution of the KPSS test under the weak BLUR 

alternative in result (b) of Proposition 7.3.2, and up to the order of magnitude #3 , we have that:

( )( )* +
, -
. /
' ' ' '

1,p-1 -1

1 1 #-1

#-1
1 1

r r
45 #

1 #-1 1 1 #-1 1
0 0

0 0

M (3%
M (3% & E & G ? #3G

M (3%

× K B (s)ds B (s)ds dr - M · B (r)B (r)dr + O (3 %

(7.3.8)

With:

( )# #' '
-1

1 1
# #

#-1 1 1 1 1
0 0

B (r) = B(r) - (r) (s) (s)ds (s)B(s) ds! ! ! !

Proof. See Appendix B.

Remark 7.5 Given that, under Gaussianity, 
1 #-1E[B (r)B (r)] = 0 , then for any given value of $

> 0, the leading term in (7.3.8) is given by the first term between brackets that determines a 

displacement to the right of this limit distribution. 

This result allows to establish that there we must expect a reduction in the empirical power 

of the KPSS test under this alternative as long as $ increase, and also an increase of the rejection 

frequencies of the null of a fixed-unit root with the Breitung’s variance-ratio test statistic given that 

we must expect to find more frequently small values of this test statistic.We have performed a small 

Monte Carlo study to numerically illustrate the performance of both test procedures under the 

alternative of a weak BLUR process for different sample sizes and values of $, keeping constant the 

variance of the error term. To save space we present some figures representing the power 

performance of the KPSS test in the three standard cases of analysis in terms of the structure of the 

deterministic component (no trend, OLS demeaned (p = 0), and OLS demeaned and detrended (p =

1) data), with the Bartlett kernel for the computation of the LRV with deterministic bandwidth 

parameter 56I

nq = [c·(n/100) ] , with c = 4, and iid Gaussian noise 
tH with variance #

H$ & 5 .
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The power results, see Figure 1 below, are based on 10000 independent realizations, sample 

size-adjusted quantiles with sample sizes n = 50, 100, 250, and 500 and values of $n = 0, 0.1, ..., 

0.9, 1.

Figure 7.1 Power performance of the KPSS tests under a weak BLUR alternative
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(a) No trend component
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(b) OLS demeaned data
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(c) OLS demeaned and detrended data

As was discussed below, increasing the value of the bilinear parameter for a fixed sample 

size creates a spurious appearance of stationary when using this testing procedures due to the joint 

effect of the displacement and flattening of the distribution 
3H (r) .

In Afonso-Rodríguez (2012a) we develop a similar study but with the DF tests (normalized 

bias of OLS estimator and OLS T-test) and we found that the size profile of both test procedures 

can be seriously distorted under a weak BLUR alternative, with a greater impact that in the above 

cases of both BLUR parameters, $ and #

H$ , even for very small values of $. Thus, there could be 

situations where a standard test for a fixed-unit root could wrongly reject in favour of stationarity 

due to the effects induced by this kind of nonstationary processes. This findings can be considered 

as the main reason to look for a testing procedure that allows to discriminate between both types of 

nonstationarity, that is, fixed-unit root against weak bilinear nonstationarity.

7.4 A new semi-nonparametric residual-based test for detecting weak bilinear nonstationarity

The first attempt to develop a testing procedure for discriminating between a fixed-unit root process 

and a bilinear unit root, with 
t8 given as in (7.3.3), was made by Charemza et.al. (2005). Their 

procedure is inspired by the DF T-test statistic based on the OLS fitting of an auxiliary regression 

related to the AR(1) model. In this case these authors propose to compute the pseudo T-test statistic 

based on the OLS fitting of an auxiliary regression which is a feasible version of the following:

t t-1 t-1 t tJK & 3H K ? J= ? L (7.4.1)

Where, from (7.2.1) and Assumption 1, we have that #
t t,p-1 p-1J= & ! " , with 

p-1" a new set of 

trend parameters formed as a linear combination of the components of 
p# , and with the error term 

given by 
t t t-1 t-1L & H 4 3H = . Using 

tH from 
tL we have 

/45 /45 /4# /4# /45H & JK 4 3H 8 4 J= , so that we can 

write(7.4.1) as:
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#
t t-1 t,p-1 p-1 tJK & 3M ? ? N! "                        (7.4.2)

Where 
t-1 t-1 t-1Z = YJK is the nonstationary regressor, and 

t tN & H under the null hypothesis $ =

0. Thus, the propose testing procedure is based on the use the standard OLS-based pseudo T-ratio 

test statistic, ˆ
n,p-1T , for testing $ = 0 against the one-sided alternative $ > 0. The next two 

propositions, that we state here without proof but that can be requested from the author, establish 

the limit distribution of ˆ
n,p-1T in the case of no deterministic component in the DGP (that is, when dt

= 0 in (2.1)) both under the null of a fixed-unit root and under the alternative of a weak BLUR 

nonstationary process.

Proposition 7.4.1 Let the series 
t
Y be generated by (7.2.1)-( 7.2.2) and (7.3.2), with 

td = 0 .

Under the null hypothesis of a fixed unit root process, with #
0= = (1,0)  ,

t 03 , % & 5 for all t = 1, 

..., n, and the Assumption 2(b) on the error process, then as n0 :

ˆ
1 2

& 3 4
5 6

' '
456#

1 1

O # =

n,p-1

0 0

T W(s)dW (s) W(s) ds = N(0,1)                    (7.4.3)

Where W(s) , and *W (s) are two independent standard Wiener processes.

This result extends to the case of OLS detrending with a general order p % 0 of the 

polynomial trend function the one obtained by Charemza et.al. (2005) only for the case of raw 

observations and for the inclusion of a constant term (p = 0). The derivation of a similar result for 

the case where the DGP contains a deterministic component is somewhat more complex due to the 

nonlinearity of the OLS estimator of $ in (7.4.2) with respect to the observed series 
t
Y and its 

components. This is one of the major drawbacks of this approach, together with the possible 

specification and treatment of more complex deterministic terms in the auxiliary regression and the 

effect of considering weakly dependent error terms.

Proposition 7.4.2. Let the series 
t
Y be generated by (7.2.1)-( 7.2.3) and (7.3.2), with 

td = 0 .

Under the sequence of local alternatives to the null hypothesis given by the weak BLUR process as 

in Definition 7.3.1, with #
n n= = (1,3 %  ,

t n n t-13 , % & 5 ? 3 H , 56#

n3 & 37 , and $ > 0 fixed, and the 

Assumption 2(b) on the error process with m > 4, then as n0 :

(a) ˆ ˆ & '
'

1
I

33 0
n n n 1

# # I

3 3
0

H (s)ds
n3 4 3 & 7,3 4 3 % 43

(H (s) +3 9 ,0%%=0

(b) ˆ 56#

n,p-1 pT = O (n )

And:

(c) ˆ & '

'

1
#

3456# 0
n,p-1 1

# # # I

3 3 3
0

3 9 ,0% =0
n T

1 +3 P F ,9 ,0% ? 3 9 ,0% %=0

                       (7.4.4)

With:

( ) ( )' ' '
# 45

1 1 1
# # # # I

3 3 3 3 3
0 0 0

P & 9 ,0% =0 ? Q 9 ,0% =0 ,9 ,0% ?3 9 ,0% %=0

And 
3H (s) the limit diffusion process given in (7.3.4).
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Remark 7.6 This result extends the proof of a similar proposition in Lifshits (2006) to the 

case of OLS detrended data, and also is a modification of his results, where the term # 56#

3(1 +3 P % in 

the denominator of the right hand side of (c) does not appears. Also, the result in 7.4.2(a) is very 

important given that it establish the root-n consistency of ˆ
n3 as an estimator of the scaled bilinear 

parameter 56#

n3 & 37 under the assumption that this effect is present in the observed process.

Despite the merits and relatively good performance of this test procedure, given some of its 

limitations and difficulties
51

ˆ
n,p nM (q )

, we propose a new alternative testing procedure that is based on 

comparing the different degree and amplitude of the fluctuations for the first difference of a fixed-

unit root process (when $ = 0), which is stationary, and of a weak BLUR process (when $ > 0), that 

is stationary only asymptotically. With this idea we present two versions of this semi-nonparametric 

residual based test, with the advantage that both are asymptotically equivalent and the first one is 

based on the same OLS residual sequence as the stationarity tests considered in section 7.7.2. Both 

test statistics are of KPSS-type in the sense that they are built as the test statistic in 

(7.7.2.7) but with a different set of residuals. The first one, !
n,p nD (q ) , is defined as:

ˆ
1 2
3 4
5 6

7 7 7! !
! !

#
n t n

456# 456# #

n,p n j,p t,p# #
t=1 j=1 t=1n n n n

1 1
D (q ) = n8 & ,7 F8 %

n·v (q ) n·v (q )
                       (7.4.5)

Where ˆ!
t,p t,p8 & J8 is the first difference of the OLS residuals given in (7.2.4) from the 

estimation of (7.2.1) under Assumption 1 on the deterministic component, while the second is given 

by:

ˆ ˆ
ˆ

1 2
3 4
5 6

7 7
#

n t
456#

n,p n j,p-1#
t=1 j=1n n

1
D (q ) = n8

n·v (q )
                  (7.4.6)

Based on the sequence of OLS residuals from the fitting of (7.2.1) in first differences, that is 
ˆ ˆ#

t t,p-1 p-1,n t,p-1JK & ? 8! " t = 1, ..., n. In (7.4.5) and (7.4.6), the scaling factors !#

n nv (q ) and ˆ#

n nv (q ) are 

kernel estimators of the LRV as in (7.2.10) based on the corresponding residual sequences. In 

Appendix C it is proved that both estimators have the same limit because the two residual sequences 

are asymptotically equivalent. However, despite this, there is a major difference between !
n,p nD (q )

and ˆ
n,p nD (q ) due to the term in their numerators. The following proposition states the stochastic 

limit distribution of each test statistics under the general assumption of a weak BLUR process 

generating the stochastic trend component 
t8 .

Proposition 7.4.3 Given the DGP (7.2.1)-( 7.2.2),( 7.3.2), the sequence of local alternatives 

to the fixed-unit root case given by the weak BLUR process as in Definition 3.1, with 

(1, )n n
#8 8 $9  ,

t n n t-1 ! " # $% & , $'(

n #  ) , and ! > 0 fixed, and the Assumption 2(a) on the error 

process, then as n"#:
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The difficulties cited above are mainly related with the use of quantiles of a null limit distribution (the standard 

normal) that could not be appropriate in any case because the DGP may not correspond to the specified auxiliary 

regression used to compute the T-test statistic ˆ
n,p-1

T , along with the fact that the auxiliary regression (7.4.2) is only an 

approximation to the true DGP (7.4.1).
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(a) ˆ #$ % 
1

( ( ( ( ( ( 
n n n n&   (

0
v (q ),v (q )* ! " # + %(+  ,- !." % - !." /0.                        (7.4.7)

(b) $ %  
1

1( (

n,p n  23
0

D (q ) D =* ! " - !." 0.                        (7.4.8)

(c) ˆ ˆ$ %
1

1( (

n,p n  231$
0

D (q ) D =* ! " 4 !." 0. (7.4.9)

With 
 23H (r) given in Proposition 3.2 and 

 231$B (r) , a (p&1)th-level 
 H (r) process, defined in 

Appendix C.

Proof. See Appendix C.

It is easy to check that under the fixed-unit root assumption, that is ! = 0, both limit 

distributions (7.4.8) and (7.4.9) are free of nuisance parameters and are simply given by

% % 
1 1

( (

0 0,p p
0 0

5 # 6 !." 0. # 7 !." 0. (7.4.10)

And:

ˆ %
1

(

0 p-1
0

D = V (s) ds (7.4.11)

With 
pW (r) given in (2.13) and 

p-1V (r) a (p&1)th-level Brownian bridge defined as:

' () )% % %
-1

r 1 1

p-1 p-1 p-1 p-1 p-1
0 0 0

V (r) = W(r) - (s)ds (s) (s)ds (s)dW(s)! ! ! ! (7.4.12)

Given that for any value ! > 0, the limit distributions  
 D and ˆ

 D are dominated by the effect 

of ! in the denominator with respect to (7.4.10) and (7.4.11), we compute the lower quantiles of 

these distributions as the critical values and the rejection of the null hypothesis ! = 0 using (7.4.5) 

or (7.4.6) will be for small values of the corresponding test statistic. The following table presents 

these critical values for the first version of the test statistic,  
n,p nD (q ) defined in (7.4.5), computed via 

Monte Carlo simulation, for different sample sizes, iid Gaussian white noise errors and with 10000 

independent realizations.

Table 7.1 Finite sample simulated critical values for  
n,p n

D (q )

No deterministic

component

Demeaned data

(p = 0)

Detrended data

(p = 1)

Significance level     0.01 n = 50 0.03356 0.02415 0.01840

0.025 0.04254 0.02858 0.02071

0.05 0.05223 0.03304 0.02335

0.1 0.06793 0.03981 0.02699

0.01 n = 100 0.03548 0.02352 0.01755

0.025 0.04621 0.02938 0.02080

0.05 0.05883 0.03469 0.02373

0.1 0.08047 0.04256 0.02781

0.01 n = 250 0.03497 0.02427 0.01735

0.025 0.04392 0.02937 0.01987

0.05 0.05748 0.03455 0.02263

0.1 0.07834 0.04213 0.02654

0.01 n = 500 0.03558 0.02343 0.01625

0.025 0.04396 0.02819 0.01905

0.05 0.05525 0.03365 0.02225

0.1 0.07609 0.04159 0.02630

0.01 n = 1000 0.03624 0.02332 0.01672

0.025 0.04638 0.02885 0.01988

0.05 0.05738 0.03440 0.02252

0.1 0.07690 0.04212 0.02646



135
 

As can be seen in this table, there are not significant differences in these values for very 

small sample sizes with respect to large ones. 

Also, despite of the differences among (7.4.10) and (7.4.11), the simulated lower quantiles 

for the null distribution of the second version of the test statistic, ˆ
n,p nD (q ) in (7.4.6), take almost the 

same values, so that in practice we can use the values in Table 1 for both tests. We have performed 

a Monte Carlo experiment to evaluate the power behaviour of these tests, based on 10000 

independent realizations, for different sample sizes and values of the scaled bilinear parameter !n =

!/n. The following Figure 7.2 presents a small part of these results, which is the power behaviour of 

the  
n,p nD (q ) test for a sample of size n = 250, with qn = [c·(n/100)

1/4
], c = 0 and 4, the Bartlett kernel, 

and values of ! = (1, 1.5, 2, 2.5, 3, 4, 5, 6, 7.5, 10) (which corresponds to values of !n from 0.063 to 

0.632).

Figure 7.2 Power performance of the  
n,p n

D (q ) tests under a weak BLUR alternative
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The results from this simulation experiment show that there is a significant increase in 

power for a given sample size for increasing values of !, and with the sample size for each value of 

! (consistency), and that the power increase with the use of the nonparametric correction for 

persistence through the kernel estimator of the long-run variance (c > 0).

In order to determine the behaviour of these new test statistics against other forms of a 

stochastic unit root process we consider a generalized version of the alternative given by the local 

heteroskedastic integrated (LHI) process introduced in McCabe and Smith (1998). 

Under the LHI alternative, it is assumed that t t # $%8 , with * -9

t t8 # ) : for any +* ;

with t: a stationary sequence such that it is verified the joint weak convergence 

) ) ), $1$'( ,)</

n n,: =#$ = = :(B (r),B (r)) = n (& 2: " !4!<"24 !<"" , #B(r) =+ 7!<" and #: :2 &:B (r) =+ ,> 7!<"

( $'(

&: :+(1 -> " 7 !<"/ , with &:> the long-run correlation between B(r) and :B (r) and ( W(r) , :W (r) ) two 

standard independent Brownian motion processes. Taking into account that the equation (2.2) for 

the stochastic trend component can be expressed by backsubstitution as ,t-1

t 0 t,0 t k=1 k t,k? #? @ %& % & @ ,

with -t

t,k i=k+1 iM = , k = 0, 1, …, t&1, and 
t,tM = 1 , we can reverse the order of the subscripts on i8

and k& without altering the result in view of the stationarity assumption concerning these error 

terms, which gives the more convenient representation ,t

= ; =2; $ A#( A A1$2;? #? @ %& % & @ based on 

forward summations. 

Now, using the same development as in Theorem 1 in McCabe and Smith (1998) we have 

that:
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. .
/

0 1
23 4

5 6
,
[na]

$'(1 $1(

[na],0 i n, p

i=1

M = exp log(1 + ) = 1 +*) 4 !B"%C !) "                      (7.4.13)

For [na] = k&1, k = 2, …, t+1, which gives:

. .
/

. .
/

7
/ 8

%

%

r

1$'( $'(1 $1(

[nr] n n, n p n

0

1$'( $'(1 $1(

0 n, p

r

1$'(%

n n, n p

0

n? #4 !<"%*) 4 !."04 !."%C !) "4 !<"

+n? !$%*) 4 !<"%C !) ""

= B (r) +* 4 !."04 !." C !) "

             (7.4.14)

Where the last equality follows from taking . = 1/2 and under the assumption that the initial 

value is of order 9D

0 p? # C !) "2; D E $'( . Then, by application of the CMT we have that

/

# # # #

$

: ;
< =
> ?

%

% %

r

1$'(

[nr]

0

r r

( $'(

:2 &: :2 &: :

0 0

n? 4!<"%* 4 !."04!."

=+ 7!<"%*+ > 7!."07!." %*+ + !$ 1> " 7 !."07!."

(7.4.15)

Where this limiting result depends on the magnitude of * , the two long-run variances 

# #:2+ 2+ and the correlation coefficient 9&:|> F $ . With this we get an asymptotically comparable 

result to the limiting distribution  H (r) for a weak bilinear unit root process and in this sense it 

seems an interesting exercise to evaluate the power of our tests against this alternative. The next 

Table 2 presents the results of a simulation experiment based on 5000 independent replications with 

) != = ( ((& 2: " GG0H! 2 "0 I for different sample sizes, deterministic components, and values of the scale 

parameter * .

Table 7.2.1 Finite sample power of the new tests statistics for a weak BLUR(1) process under a 

local heteroskedastic STUR(1) alternative

* = 1.0 2.5 5.0 10.0

No deterministics                         n = 100 c = 0 0.0552 0.0740 0.1302 0.3142

c = 4 0.0528 0.0722 0.0886 0.1894

c = 12 0.0400 0.0412 0.0544 0.0950
n = 250 c = 0 0.0620 0.0822 0.1334 0.3162

c = 4 0.0618 0.0696 0.0964 0.1984

c = 12 0.0432 0.0482 0.0582 0.1032
n = 500 c = 0 0.0640 0.0766 0.1356 0.2958

c = 4 0.0646 0.0752 0.1052 0.1930

c = 12 0.0466 0.0550 0.0698 0.1066

Demeaned                                   n = 100 c = 0 0.0340 0.0496 0.0832 0.1994

c = 4 0.0174 0.0212 0.0300 0.0578

c = 12 0.0014 0.0014 0.0016 0.0030
n = 250 c = 0 0.0526 0.0708 0.1086 0.2516

c = 4 0.0412 0.0426 0.0632 0.1280

c = 12 0.0160 0.0186 0.0238 0.0366
n = 500 c = 0 0.0620 0.0728 0.1198 0.2714

c = 4 0.0504 0.0630 0.0874 0.1596

c = 12 0.0328 0.0382 0.0468 0.0788

Demeaned and detrended           n = 100 c = 0 0.0058 0.0074 0.0168 0.0326

c = 4 0.0000 0.0002 0.0006 0.0024

c = 12 0.0000 0.0000 0.0002 0.0010
n = 250 c = 0 0.0312 0.0434 0.0714 0.1400

c = 4 0.0084 0.0100 0.0144 0.0292

c = 12 0.0002 0.0002 0.0006 0.0008
n = 500 c = 0 0.0480 0.0566 0.0970 0.2020

c = 4 0.0290 0.0374 0.0556 0.0894

c = 12 0.0074 0.0112 0.0126 0.0176
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In general we can appreciate that our test statistics has no significant power against this 

STUR alternative, except for relatively high values of the scale parameter * .

7.5. Empirical illustration

In order to illustrate the application of this new testing procedure for detecting a bilinear unit root as 

an alternative to the fixed-unit root process, we consider the analysis of four major stock market 

indices: daily prices of the IBEX35, SP500 and DJCA stock market indexes, and weekly prices of 

the CAC40 index. To our knowledge, the T-test for a bilinear unit root has been used in practice in 

very few papers, Charemza et.al. (2005), Hristova (2005), and Tabak (2007). In all the cases, the 

authors recommend the use of stock log-price series obtained from return series corrected by 

GARCH-type effects. 

We don’t formally explore the consequences of omitting this type of correction on the size 

and power properties of any of this test statistics, but we conduct the empirical analysis on the 

original log-price series
52

) @,
q

t t-1 t,p-1 p-1 k t-k t

k=1

IJ #  K % % IJ % L! "

. In order to incorporate some kind of weak dependence in the observed 

process it is possible to consider an extended version of the auxiliary regression in (4.2) given by:

This model directly results from the assumption that t? follows a BL(q+1,0,1,1) model, q +

1, with a fixed unit root component, that is ,q+1 k

k=1 k t t-1 t-1 t(1 - M "? #  & ? % & , where the autoregressive 

polynomial can be decomposed as , , , ,q+1 k q+1 q q+1 k

k=1 k k=1 k k=1 j=k+1 j1 - M # !$ 1  "M % !$ 1M"!$% !  "M " , which 

gives t t-1 t-1I? #  & ? % , @q

k=1 k t-k tI? % & under the autoregressive unit root restriction ,q+1

k=1 k # $ , and 

with @ ,q+1

k j=k+1 j= - . A similar result is obtained under the assumption of a BL(1,q+1,1,1) model, 

that is ,q+1

t 1 t-1 t-1 k=1 k t-k t? # ! % & "? % N & % & , and also under the BL(1,0,1,1) parameterization with the 

error term t& following a linear process, t t& # O!M"P . In any case, under the null of a fixed unit root, 

! = 0, the augmentation terms t-kI? (and t-kIJ ) are all stationary, so that their presence should not 

interfere with the asymptotic results. In practice, to avoid a collinearity effect with the nonstationary 

regressor t-1 t-1 t-1Z = YIJ , it is precise to run the OLS fitting of this augmented auxiliary regression 

without the first lag of t-1IJ , that is ) , @q

t t-1 t,p-1 p-1 k=1 k t-k-1 tIJ #  K % % IJ % L! " . The following Table 7.3 

presents the details of this analysis for each series.

Table 7.3 Results of tests for a bilinear unit root

2.A. Daily closing log-prices of IBEX35

        (01.09.1995-17.09.1999)          n = 1015

Deterministic component (polinomial trend)

None p = 0 p = 1 p = 2

ˆ
n,pT (q) q = 0 3.6036 3.4561 3.4403 3.3851

1 3.7683
2 3.6659

3 3.6642

4 3.6691
5 3.6917

 
n,p nD (q ) c = 0 2.6648 0.0707 0.1932

c = 12 2.0004 0.0585 0.1615
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For the price series of the IBEX35 stock market index we choose the same sample period as in Charemza et.al. (2005) 

to compare the results of both test procedures but without the correction for GARCH effects. The results obtained are 

very similar to the former ones, thus indicating that this type of potential effect could have little influence on the 

estimated value of the T-test statistics.
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Table 7.3.1 Results of tests for a bilinear unit root (continuation)

2.B. Daily closing log-prices of SP500

       (03.01.2000-26.01.2012)          n = 3036

Deterministic component (polinomial trend)

None p = 0 p = 1 p = 2

ˆ
n,pT (q) q = 0 &4.8153 &4.8155 &4.8257 &4.8267

1 &5.1279

2 &5.0582
3 &5.0639

4 &5.1023

5 &5.0936

 
n,p nD (q ) c = 0 0.1229 0.1229 0.0928

c = 12 0.1758 0.1757 0.1333

2.C. Daily closing log-prices of DJCA

        (03.01.2000-26.01.2012)          n = 3048

Deterministic component (polinomial trend)

None p = 0 p = 1 p = 2

ˆ
n,pT (q) q = 0 &3.6586 &3.6634 &3.6678 &3.6682

1 &3.8145

2 &3.7421
3 &3.7666

4 &3.7930

5 &3.7765

 
n,p nD (q ) c = 0 0.0731 0.0772 0.0807

c = 12 0.1002 0.1061 0.1109

2.D. Weekly closing log-prices of CAC40

        (04.01.2002-27.01.2012)          n = 526

Deterministic component (polinomial trend)

None p = 0 p = 1 p = 2

ˆ
n,pT (q) q = 0 &2.4586 &2.4673 &2.4675 &2.5188

1 &2.4058

2 &2.3757
3 &2.4304

4 &2.3661

5 &2.4482

 
n,p nD (q ) c = 0 0.1229 0.1262 0.3763

c = 12 0.1369 0.1404 0.4019

Note. For the T-test of Charemza et.al. (2005), the case q = 0 corresponds to the standard OLS T-ratio test statistic computed from (4.2), with q > 1 

indicating the OLS T-ratio test statistic computed from (4.2) with the augmentation of q lags of AYt&1. For the computation of the kernel LRV in the 

new test statistic, we consider the deterministic bandwidth parameter given by qn = [c·(n/100)1/4], with c = 0 and c = 12.

The analysis of this results indicate that there is no clear evidence about the existence of a 

bilinear unit root in this series, except for the IBEX35 and DJCA log-price series where for a 10% 

significance level both test procedures agree when considering the specification of the deterministic 

component with a constant term.

Further analysis must be done in both cases on the effects of misspecification of the 

deterministic component such as, for example, the existence of structural breaks that seems to be a 

prominent feature of some of this series for long time periods.

7.6 Conclusions

In this paper we have set out to investigate the effects that a particular member of the class of 

stochastic (or randomized) unit root (STUR) processes have on some commonly used tests for the 

null hypothesis of stationarity against the alternative of a fixed (or linear) unit root. This STUR 

process, the weak bilinear unit root process (weak BLUR), is given by a restricted and 

reparameterized version of a simple first order diagonal bilinear model, the BL(1,0,1,1) model, that 

seems to be useful for characterizing the behaviour of some financial time series and for replicating 

some of their stylized facts, such as periods of high persistence and conditional heteroskedasticity. 

This type of nonstationary processes was initially considered by Charemza et.al. (2005) and was 

subsequently studied by Lifshits (2006), who established an invariance principle that is the basis for 

our developments. 
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With this results, we found that these test procedures are consistent, at the usual rates, 

against this alternative but for high values of the bilinear parameter can lead to wrongly identify 

stationarity as a consequence of the way in which this limit distribution depends on the value of this 

key parameter. As an alternative to an existing parametric testing procedure proposed by Charemza 

et.al. (2005), we propose two alternative and equivalent test statistics based on a simple 

modification of the KPSS test that have the main advantage of allowing for a very general 

specification and treatment of the deterministic component. We derive their limit distributions 

under the null of a fixed unit root and under the alternative of a weak bilinear effect and found 

through a simulation experiment that have acceptable power in finite samples. 

Appendix A. Proof of Proposition 7.3.1

Given the polynomial decomposition  C(L) = C(1) - (1 - L)C(L) , with #,  
j

j=0 jC(L) = c L , #, 
j i=j+1 ic = c ,

and #, B # 
(

j=0 jc , then tC can be represented as

   
t t t t t t-1& # O!$"P 1 !$ 1 M"O!M"P # Q 1 !P 1P "             (A.1)

With t tv = C(1)u , and   
t tu = C(L)u . Then, for the linear process t t ! "#$%& , this decomposition 

yields directly the martingale approximation to the partial sum process of a stationary time series, 

and thus it is verified that:

 !"
[nr]

'()*

t

t=1

n +#,% ! - .#,%           (A.2)

From the distributional assumptions on 
t
u we have that 

t
v is either iid (Case (a)), or a MDS 

(Case (b)), with zero mean and variance * * * *

v t u/ ! 012 3 ! "#(% - , with  
* *

v/ ! - . Also, it is verified that 

#   
*

tE[u ] , which implies that  
t pu = O (1) . Using (A.1), we have that ( )t$ % can be decomposed as 

t 0 t-14 # % ! 4 54 !   
6 7'( 7'( 7'*4 5412 ' #& '& %3 , that is:

    
7 6 7'( 7'( 7'* 287 7'( 7'*4 # % ! 4 542 ' 4#& '& % ! 4 # % ' 4#& '& %  

So that we can write:

    

    

7 7 7'( 7 287 7'( 7'* 7'( 7 7 7'(

287 7'( 7 7'( 7'* 7'( 7 7'(

9 ! 4 # %9 5  ! 14 # % ' 4#& '& %39 5 2 ' #& '& %

=4 # %9 5 2 ' 4#& '& %9 ' #& '& %

  

 

Under &  n n= = (1,4 % , we then have:

    
78: 287 : 7'(8: 7 : 7'( 7'* 7'(8: 7 7'(9 ! 4 # %9 5 2 ' 4 #& '& %9 ' #& '& %             (A.3)

Where
v,t n n t-14 # % ! (54 2 . Now, as in Lifshits (2006), we consider the auxiliary sequence

t,nY

defined as 
t,n n t t,n v,t+1 n t,nY = (1 +4 2 %9 ! 4 # %9 which, from (A.3), can also be written 

as     
t,n t+1,n t+1 n t t-1 t,n t+1 tY =9 ' 2 5 4 #& '& %9 5 #& '& % . Now, using:

    
78: 7'(8: 7 : 7'( 7'* 7'(8: 7 7'(9 ! ; 5 2 ' 4 #& '& %9 ' #& '& %

We have:
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t,n t-1,n v,t+1 n t,n t-1,n

2875( : 7'(8: 7 : 7'( 7'* 7'(8: 7 7'( 7'(8:

v,t+1 n t-1,n t t-1,n

2875( : : 7'( 7'* 7'(8: 7 7'(

Y - Y =4 # %9 ' ;

=4 # %1; 5 2 ' 4 #& '& %9 ' #& '& %3 ' ;

=4 # %#; 5 2 % ' ;

-4 # %14 #& '& %9 5 #& '& %3

 

 

 

 

Where the first term is given by:
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Then, scaling by n
'1/2

gives:
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Under the additional condition m 4 4, then '()* '()* * * '()* '()*

t v pn41: #2 '/ %3 ! : 4<= #: % . Also, given 

that:

'()* '()*

v,t n n t-1 t-1 p4 # % ! (54 2 ! (54#: 2 % ! (54= #: % 

And:

    
'()* '()* '()* '()* '()*t-1

7'( 7'* 7'(8: 7'( 7'* :84 > > > n
[n (u - u )]n9 ! 1: #& '& %3? # % ! = #: %= #(% ! = #: %

Then we can write:
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* +
, -

*
'()*t,n t-1,n t-1,n t v

p

Y Y Y v 4/
- = 1 +4 5 5= #: %

nn n n n

Which gives the same solution to 4H (r) that under the iid assumption but with the short-run 

variance *

 - replaced by  
*

- , that is:

 
   5

r * *
*

4 4
40

1 +4 - @
H (r) =- A #,% #B.#@% ' 4- B@% 5 4- ,

A #@%

With   
* *

4A #,% ! CD>#4- .#@% ' 4 - ,)*% .

Appendix B. Proof of Proposition 7.3.3.

Given the asymptotic distribution of the KPSS tests under the weak BLUR alternative:

6 75 5 5
1 1*

r
1,p'( * '(

p48> 48>
0

*8>0 0

M (4%
M (4% ! E ? #@%B@ B,) ? #,% B, ! E

M (4%

We consider the first-order Taylor series expansion in $, that is,
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8

8
p *

p p p

4!6

M (4%
M (4% !F 54< 5= #4 %

4

With the aim of get evidence about the behaviour of the power profile as a function of $.

Given that:

8 8 8. /
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Where:
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5 5
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48> 4 4
p p p p

0 0

-1
1 1
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p p p p p
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H (r) H (r) H (s)
= - (r) (s) (s)ds (s) ds

4 4 4

= B(r) - (r) (s) (s)ds (s)B(s) ds + O (4%
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Then:
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Which finally gives:
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r r
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> *8> > > *8> >
0 0

0 0

M (4% !F 5*4F

× K B (s)ds B (s)ds dr - M · B (r)B (r)dr + O (4 %

To this order of magnitude (i.e., where terms in $2
and higher powers are ignored), the 

second expression above determine the power distortion of the KPSS tests for small $ under the 

weak BLUR alternative. Given that the expected value of the elements of the two integrals between 

brackets is not zero, there is both a scale shift and a displacement of the distribution to the left.
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Appendix C. Proof of Proposition 7.4.3

From the OLS residual sequence in (2.4), we have that its first difference is given by:

ˆˆ &  
-v v -1t

t,p t,p t p n p,n pn
9 ! G9 ! 9 ': G # %<1: # ' %3! " # #                          (E.1)

Where  
t t9 ! G9 . Thus, the scaled partial sum process of this first differenced residuals is 

given by:

ˆˆ &"  

[nr]
'()* '()* '#25()*% 2 '([nr]

t,p [nr],p n,4 > : >8: >n

t=1

n9 ! : 9 !? #,% ': # %<1: # ' %3! " # #                          (E.2)

With " ! 
'()* 1:,3

t=1 t,p48>n9 H #,% , defined in (3.7), under the weak BLUR assumption (that is, with 

v = '1/2 and &
n n= (1,4 % ). Also, in (E.1), with v = '1/2 we have that & -1t

p n
G # % ! =#: %! , so that 

  
'()*

t,p t p9 ! 9 5= #: % and thus:

" "     

n n
'( '( '()*

: 78> 7'I8> 7 7'I >

7!I5( 7!I5(

J #I% ! : 9 9 ! : 9 9 5= #: %                          (E.3)

Where  
t t n t-1 t9 ! #4 # % '(%9 5   . As an alternative to the use of first differences of OLS 

residuals from the original auxiliary regression in levels, (E.1), we can make use of the auxiliary 

regression based on first differences, that is:

&  
t t,p-1 p-1 tG; ! 59! $ (E.4)

With OLS residuals given by:

ˆ ˆˆ & & 
-v v -1t

t,p-1 t t,p-1 p-1,n t p-1 p-1,n p-1,n p-1n
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With:

ˆ ( )
&* +

, -
" "  

-1
n n

v -1 -(1-v)j j j1
p-1,n p-1,n p-1 p-1 p-1 p-1 jn n n n

j=1 j=1

n ( - ) = ( ) ( ) n ( )9" $ $ ! ! !                            (E.6)

Taking now v = 1/2, and under the assumption of a weak bilinear unit root process, we have 

the following distribution limit for (E.6):

6 7ˆ &! 5 5
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1 1
'()* '(

p-1,n p-1,n p-1 p-1 p-1 p-14
0 0

n ( - ) (s) (s)ds (s)dH (s)" $ $ ! ! !                            (E.7)

So that the scaled partial sum of these OLS residuals is given by:

ˆˆ &" "
[nr] [nr]

'()* '#25()*% 2 '(t
t,p-1 n,4 >'( >'(8: >'(8: >'(n

t=1 t=1

n9 !? #,% ': K # %1: # ' %3" $ $                            (E.8)

With weak limit given by ˆ" !'()* 1:,3

t=1 t,p-148>'(n9 + #,% , where 
48>'(B (r) is a (p'1)th-level 4H (r)

process given by:
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r 1 1

48>'( 4 >'( >'( >'( >'( 4
0 0 0
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143
 

Also, from the fact that & t
p-1 n

( ) = O(1)! , then ˆ  
'()*

t,p-1 t p9 ! 9 5= #: % as n9 , and:
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As in (E.3), which gives:
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From the recursive relation '()*t-1 t
n,4 :84 >n n

H ( ) = H ( ) + O (n ) , we then have that 

'()*7'I'( 7'(
n,4 :84 >n n

H ( ) = H ( ) + O (n ) for any h 4 1, so that the term between brackets can be written as:
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Which is Op(1), so that the first summand term in (E.11) is Op(n
'1/2

). Also, for the second 

summand term we have that:
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                     (E.13)

Where the stochastic limit of the term between brackets is finite and thus it is again of order 

Op(n
'1/2

). The last term in (E.11) is the usual h-lag order sample covariance of the error sequence :t,

which by standard application of the WLLN under stationarity and weak dependence gives 

" 9-1 n p

7!I5( 7 7'I 7 7'In  J#I% ! 01  3 . Finally, for the first term in the second summand of (E.11) we 

have the following two possible situations. When h > 1, it is of application the same argument as 

before in (E.13), that is:
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While that for h = 1, then it can be written as:
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By the stationarity of the sequence * *

7'I ( ' - % , h 4 0, and under the condition of existence of 

the fourth moment #  L

tE[ 3 , then:
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With * * * *

 7  M ! 01# ' - % 3 . With this, the term between brackets is Op(1) and thus we have:
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Then, putting together all these results we have ˆ 9 
p

n nJ #I%8J #I% J#I% , h > 1, and:
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With ;(h) = 0 for all h 4 1 under serially uncorrelated error terms. For the particular case 

where h = 0 we have that:
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Which gives:
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Using some of the above results concerning the probability order of magnitude of the terms 

between brackets.
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