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Abstract 

 

It is currently necessary to implement proposals that 

reduce service level times in the area of customs control. 

For this it is necessary to carry out a study of mathematical 

models that adapt to the reduction of possible problems. 

Once an appropriate predictive pattern is found, it is 

necessary to carry out an implementation to find the best 

option allowing to obtain a continuous flow of service, 

achieving optimal scaling. But above all achieving a better 

control in all the processes developed with better fluidity 

in the input and output modules and in the operational 

area.   
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Resumen 

 

En la actualidad es necesario implementar propuestas que 

disminuyan los tiempos de nivel de servicio en el área de 

control de aduanas. Para ello es necesario realizar, un 

estudio de modelos matemáticos que se adapten al 

abatimiento de posibles problemas. Una vez de encontrar 

un patrón predictivo apropiado, es necesario llevar a cabo 

una implementación para encontrar la mejor opción 

permitiendo obtener un flujo continuo de servicio, 

alcanzando un óptimo escalamiento. Pero sobre todo 

alcanzando un mejor control en todos los procesos 

desarrollados con una mejor fluidez en los módulos de 

entrada como de salida y en área operativa. 

 

Optimización, Modelos matemáticos, Aduanas 

 
Citation: NUÑEZ-PEREZ, F. A. & ESCOTO-SOTELO, E. A. Optimization of import transfers from a customs bonded 

warehouse using a server model. ECORFAN Journal-Republic of El Salvador. 2019. 5-9: 1-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Correspondence to Author (email: Phd_paco@hotmail.com) 

† Researcher contributing first author. 

 

 

© ECORFAN Journal - Republic of El Salvador                                                   www.ecorfan.org/republicofelsalvador



2 

Article                                                                      ECORFAN Journal-Republic of El Salvador 
                                                                              December 2019 Vol.5 No.9 1-12 

 

 
 
ISSN-On line: 2414-4886 

ECORFAN® All rights reserved. 

 

NUÑEZ-PEREZ, F.A. & ESCOTO-SOTELO, E.A. 

Optimization of import transfers from a customs bonded 

warehouse using a server model. ECORFAN Journal-

Republic of El Salvador. 2019 

Introduction 

 

The inspected enclosures are concessions 

granted by the tax administration service, with 

the objective of having an adequate service that 

involves the handling, storage and custody of 

merchandise. The case study reported in this 

project was carried out in the audited premises 

199 and 221 according to appendix 6 of the 

customs law. Attached to customs law, site 221 

provides the following services: Loading / 

unloading of merchandise from ship to ship side 

or vice versa. Shipment of merchandise from 

ship side to storage area. Delivery / receipt of 

merchandise from storage area by means of 

transport or vice versa (rail or truck), 

examinations of goods (prior), deconsolidation, 

consolidation, labeling and conservation of 

goods. With the knowledge of the cause of the 

multiple services listed, a search for the 

optimization of the audited area was performed, 

analyzing the following optimization models: 

 

Optimization models  

 

Queue theory: is responsible for the 

mathematical analysis of the phenomena of 

waiting lines or queues. These types of models 

are frequently presented when a service is 

requested by a series of clients and both the 

service and the customers are probabilistic. The 

study of the waiting lines tries to quantify the 

phenomenon of waiting in queues, through 

representative measures of efficiency, such as 

the average length of the queue, the average 

waiting time in it, as well as the average use of 

the facilities.  

 

Elements of a queue model: the main 

actors in a queue situation are the client and the 

server. Clients arrive at an installation (service) 

from a source. Upon arrival, a customer can be 

serviced immediately or wait in a queue if the 

facility is busy. When an installation completes 

a service, it automatically "pulls" a customer 

who is waiting in the queue, if any. From the 

point of view of queue analysis, the arrival of 

customers is represented by the time between 

arrivals (time between successive arrivals), and 

the service is measured by the service time per 

customer. Usually, the time between arrivals and 

service are probabilistic or deterministic.  

 

 

 

 

The size of the tail plays a role in queue 

analysis. It can be finite, for all practical 

purposes, infinite. Queue discipline represents 

the order in which customers are selected in a 

queue. This factor is of great importance in the 

analysis of queue models. Having the following 

disciplines.  

 

A) The first to arrive is the first to be attended 

(the most common). 

 

B) The last to arrive is the first to be served. 

 

C) The service in random order. 

 

D) Select customers from the queue, based on 

some order of priority.  

 

Queue behavior plays a role in the 

analysis of waiting lines. Customers can switch 

from a longer to a shorter queue to reduce the 

waiting time, they can stop queuing due to the 

long anticipated delay, or get out of a queue 

because they have been waiting too long. 

 

The service installation design may 

include parallel servers. They can also be 

arranged in series or arranged in a network. The 

source from which customers are generated can 

be finite or infinite. A finite source limits the 

number of customers that arrive. An infinite 

source is, for all practical purposes, forever 

abundant.  

 

A queue system is specified by six main 

features: 

 

• The type of distribution of tickets or arrivals 

(time between arrivals). 

 

• The type of distribution of exits or 

withdrawals (service time). 

 

• The service channels. 

 

• The discipline of service. 

 

• The maximum number of clients allowed in 

the system. 

 

• The source or population.   

 

The objectives of queue theory consist 

of: 
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• Identify the optimal level of system 

capacity that minimizes its overall cost. 

 

• Evaluate the impact that the possible 

alternatives for modifying the capacity of the 

system would have on its total cost. 

 

• Establish a balanced (“optimal”) balance 

between quantitative considerations of costs and 

qualitative considerations of service. 

 

• Pay attention to the time spent in the 

system or in the queue: the "patience" of 

customers depends on the type of specific 

service considered and that can cause a customer 

to "leave" the system. 

 

Role of exponential distribution 

 

In most queuing situations, arrivals occur 

randomly. Randomness means that the 

occurrence of an event (for example, the arrival 

of a customer or the termination of a service) is 

independent of the time elapsed since the 

occurrence of the last event. Random times 

between arrivals and service are quantitatively 

described by means of an exponential 

distribution, which is defined as Eq. (1). 

 

𝑓(𝑡) = ∑ 𝜆𝑒−𝜆𝑡, 𝑡 > 0
𝑛

𝑘=0
               (1)

  

For exponential distribution Eq. (2) 

 

E {t}= 1/λ                 (2)

  

P {t ≤  T} = ∫ 𝜆𝑒−𝜆𝑡𝑇

0
𝑑𝑡 = 1 − 𝑒−𝜆𝑇  

 

The definition of E (t) shows that it is the 

rate per unit of time at which events (arrivals or 

departures) are generated. The exponential 

distribution describes a totally random 

phenomenon. For example, if the time is now 

8:20 AM. Whereas the last arrival was at 8:02 

AM. The probability that the next arrival will 

occur at 8:29 is a function only of the interval 

from 8:20 to 8:29, and is totally independent of 

the time that has elapsed since the occurrence of 

the last event (8:02 a 8:20 AM). The totally 

random property of the exponential is known as 

forgetfulness or lack of memory. Since f (t) is the 

exponential distribution of time t, between 

successive events (arrivals), if S is the interval 

from the occurrence of the last event, then the 

forgetfulness property implies that:  

 

𝑃{𝑡 > 𝑇 + 𝑆|𝑡 > 𝑆} = 𝑃{𝑡 > 𝑇}      (3) 

 

To verify this result, we observe that for 

the exponential with mean 1 / λ, Eq. (4). 

 

𝑃{𝑡 > 𝑌} = 1 − 𝑃{𝑡 < 𝑌} = 𝑒−𝜆𝑌            (4)

       

Therefore: 

 

𝑃{𝑡 > 𝑇 + 𝑆|𝑡 > 𝑆} =
𝑃{𝑡>𝑇+𝑆,𝑡>𝑆}

𝑃{𝑡>𝑆}
=

𝑃{𝑡>𝑇+𝑆}

𝑃{𝑡>𝑆}

      

=
𝑒−𝜆(𝑇+𝑆)

𝑒−𝜆𝑆
= 𝑒−𝜆𝑇  

= 𝑃{𝑡 > 𝑇}  

 

Pure birth and death models (relationship 

between exponential and poisson 

distribution) 

 

This section presents two queue situations, the 

pure birth model in which only arrivals occur, 

and the pure death model in which only exits 

occur. An example of the pure birth model is the 

creation of birth certificates of newborn babies. 

The model of pure death can be demonstrated 

through the random withdrawal of an item in 

existence in a store. The exponential distribution 

is used to describe the time between arrivals in 

the pure birth model and the time between exits 

in the pure death model. A byproduct of the 

development of the two models is to demonstrate 

the close relationship between the exponential 

distribution and that of Poisson, in the sense that 

one distribution automatically defines the other. 

 

Pure birth model 

 

Only arrivals occur. 

 

Define: P0 (t): probability that no arrivals 

will occur during a period of time t. Since the 

time between arrivals is exponential and the 

arrival rate is λ clients per time unit, then:  Eq. 

(5) 

 

P0(t)= P{ time between arrivals ≥ t}              (5)

       

= 1 − 𝑃{𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 ≤ 𝑡}  

 

= 1 − (1 − 𝑒−𝜆𝑡)  

 

For a sufficiently small time interval h > 

0, we have: Eq. (6) 
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𝑃0(ℎ) = 𝑒−𝜆ℎ = 1 − 𝜆ℎ +
(𝜆ℎ)2

2!
− ⋯ = 1 − 𝜆ℎ + 0(ℎ2)   (6)

     

The exponential distribution is based on 

the assumption that during h> 0, when much an 

event (arrival) may occur. Therefore, as h → 0, 

Eq. (7) 

 

𝑃1(ℎ) = 1 − 𝑃0(ℎ) ≈ 𝜆ℎ               (7) 

  

This result shows that the probability of 

an arrival during h is directly proportional to h, 

with the arrival rate, λ, as a constant of 

proportionality. To derive the distribution of the 

number of arrivals during a period t when the 

time between arrivals is exponential with 

average 1 / λ, define:  

 

𝑃𝑛(𝑡) = Probability of n arrivals during t. 
For a h> 0 small enough, Eq. (8). 

 

Pn (t+ h) ≈ Pn (t) (1-λh) + Pn -1 (t)λh, n > 0       (8)

      

Po (t + h) ≈ P0 (t) (1- λh),                    n=0 

 

In the first equation there will be n 

arrivals during t + h if there are n arrivals during 

t and no arrival during h, or n - 1 arrivals during 

t and one arrival during h. not all other 

combinations are allowed because, according to 

the exponential distribution, at most there may 

be an arrival during a very small period h. The 

law of the product of probabilities is applicable 

to the right side of the equation because arrivals 

are independent. As for the second equation, 

during t + h there can be 0 arrivals only if there 

are no arrivals during t and h. Rearranging the 

terms and taking the limits as h → 0 to obtain the 

first derivative of Pn (t) with respect to t, we 

have:  

 

𝑃′𝑛(𝑡) =
lim
ℎ→0

𝑃𝑛(𝑡+ℎ)−𝑃𝑛(𝑡)

ℎ
= −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛 − 1(𝑡), 𝑛 > 0 

    

𝑃′0(𝑡) =
lim
ℎ→0

𝑃0(𝑡+ℎ)−𝑃0(𝑡)

ℎ
= −𝜆𝑃0(𝑡), 𝑛 = 0  

 

The solution of the above differential 

equations gives  Eq. (9) 

 

𝑃𝑛(𝑡) =
(𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
, 𝑛 = 0,1,2, …     (9) 

 

 

 

 

 

This is a poisson distribution with mean 

E {n | t} = λt of arrivals during t. The previous 

result shows that, if the time between arrivals is 

exponential with average 1 / λ, then the number 

of arrivals during a specific period t is Poisson 

with average λt. The opposite also works. The 

following table summarizes the relationships 

between the exponential distribution and 

Poisson, given the arrival rate λ: 

 

Pure death model 

 

In the model of pure death, the system starts with 

N clients at time 0, with no new arrivals allowed. 

Departures occur at the rate of m customers per 

unit of time. To develop the differential 

equations of the probability Pn (t) that n clients 

remain after t units of time, we follow the 

arguments used with the pure birth model. Thus,  

 

𝑃𝑁(𝑡 + ℎ) = 𝑃𝑁(𝑡)(1 − 𝜇ℎ)  

𝑃𝑁(𝑡 + ℎ) = 𝑃𝑁(𝑡)(1 − 𝜇ℎ)  

𝑃𝑛(𝑡 + ℎ) = 𝑃𝑛(𝑡)(1 − 𝜇ℎ) + 𝑃𝑛 +
1(𝑡)𝜇ℎ, 0 < 𝑛 < 𝑁  

𝑃0(𝑡 + ℎ) = 𝑃0(𝑡)(1) + 𝑃1(𝑡)𝜇ℎ  

As h → 0, we get 

𝑃′𝑁(𝑡) = −𝜇𝑃𝑁(𝑡)  

𝑃𝑛(𝑡 + ℎ) = 𝑃𝑛(𝑡)(1 − 𝜇ℎ) + 𝑃𝑛 +
1(𝑡)𝜇ℎ, 0 < 𝑛 < 𝑁  

𝑃′0(𝑡) = 𝜇𝑃1(𝑡)  

 

The solution of these equations gives the 

following truncated Poisson distribution Eq 

(10): 

 

Pn(t) =
(𝜇𝑡)𝑁−𝑛𝑒−𝜇𝑡

(𝑁−𝑛)!
, 𝑛 = 1,2, … , 𝑁             (10)

       

P0(t) = ∑ 𝑃𝑛(𝑡)

𝑁

𝑛−1

 

 

General Tail Model of Poisson 

 

In this model, arrivals and departures are 

combined based on Poisson's assumption, that is, 

times between arrivals and service times follow 

the exponential distribution. The development of 

the model is based on the long-term or steady-

state behavior of the queue situation, achieved 

after the system has been in operation for a 

sufficiently long time. This type of analysis 

contrasts with the transient (or heating) behavior 

that prevails during the start of the system 

operation.  
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The general model assumes that both 

entry and exit rates depend on the state; which 

means that they depend on the number of 

customers in the service installation. For 

example, in a toll booth on a highway, managers 

tend to accelerate the collection of fees during 

peak hours. Define:  

 

n = number of customers in the system 

(queuing, in addition to those being served).  

 

Λn = arrivals rate, if n customers are the 

system.  

 

Μn = Departure rate, if n customers are 

in the system.   

 

Pn = stable status probability that n 

customers are in the system.  

 

The general model derives Pn as a 

function of λn and μn. These probabilities are 

then used to determine the performance 

measures of the system, such as the average 

queue length, the average waiting time, and the 

average utilization of the installation. The 

probabilities Pn are determined by means of the 

transition rate diagram. The queue system is in 

state n when the number of clients in the system 

is n. for n> 0, the state n can change only to two 

possible states: n - 1 when an output occurs at the 

rate of μn, and n + 1 when an arrival occurs at 

the rate of λn. State 0 can only change to state 1 

when an arrival occurs at the rate of λ0. Note that 

μ0 is undefined because no outputs can occur if 

the system is empty. Under steady state 

conditions, for n> 0, the expected rates of 

inflows to and from state n must be equal. Based 

on the fact that state n can change only to states 

n - 1 and n + 1, we have: (Expected input flow 

rate to the state) = λn - 1Pn - 1 + μn + 1Pn + 1  

Also, (Expected output flow rate of state n) = (λn 

+ μn) Pn By matching the two rates, we get the 

following balancing equation Eq. (11). 

 
𝜆𝑛 − 1𝑃𝑛 − 1 + 𝜇𝑛 + 1𝑃𝑛 + 1 = (λ𝑛 +  μ𝑛)𝑃𝑛, 𝑛 = 1,2 … (11) 
 

The balancing equation associated with n 

= 0 is  

𝜆0𝑃0 =  𝜇1𝑃1 

 

The balancing equations are solved 

recursively as a function of P0. For n = 0, we 

have: Eq. (12) 

 

𝑃1 = (
𝜆0

𝜇1
) 𝑃0               (12) 

Then, for n = 1, we have: Eq. (13) 

 

𝜆0𝑃0 + 𝜇2𝑃2 = (𝜆1 + 𝜇1)𝑃1             (13) 

 

Then, for n = 1, we have Substituting P1 

= (λ0 / μ0) P0 and simplifying, we obtain Eq. 

(14): 

 

𝑃2 = (
𝜆1𝜆0

𝜇2𝜇1
) 𝑃0               (14) 

 

We can demonstrate by induction that 

Eq. (15) 

 

𝑃𝑛 = (
𝜆𝑛−1𝜆𝑛−2…𝜆0

𝜇𝑛𝜇𝑛−1…𝜇1
) 𝑃0, 𝑛 = 1,2, …                (15) 

 

The value of P0 is determined with the 

equation Eq. (16) 

 
∑ 𝑃𝑛 = 1∞

𝑛=0                 (16) 

  

Specialized Poisson Tails 

 

In the situation of specialized Poisson queues 

with c parallel servers. A client is selected from 

the queue to start the service with the first 

available server. The rate of arrivals to the 

system is λ clients per time unit. All parallel 

servers are identical, that is, the service rate of 

any server is μ clients per unit of time. The 

number of customers in the system is defined to 

include those in the service and those in the 

queue. A convenient notation to summarize the 

characteristics of the queue situation is given by 

the following format:  

 

(a/b/c): (d/e/f)  

 

Where:  

 

a = arrivals distribution.  

 

b = distribution of outputs (service time). 

 

c = number of parallel servers.  

 

d = line discipline. 

 

e = maximum number (finite or infinite) 

allowed in the system (queuing or in service). 

 

f = Requesting font size (finite or 

infinite).  
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Figure 1 Schematic representation of a queue system with 

c parallel servers 

 

As can be seen in figure two, it is a clear 

example of how a multi-server system works. 

 

The standard notation to represent the 

distributions of arrivals and departures (symbols 

a and b) is: 

 

M = Markovian (or Poisson) distribution 

of arrivals and departures (or equivalently 

exponential distribution of time between arrivals 

and service). 

 

D = Constant time (deterministic). 

 

Ek = Erlang distribution or time range (or 

equivalently, the sum of independent 

exponential distributions).  

 

GI= General (generic) distribution of 

time between arrivals. 

 

G = General (generic) distribution of 

service time. 

 

The notation for queuing discipline 

(symbol d) includes: 

 

FCFS = First to arrive, first to be served. 

 

LCFS = Last to arrive, first to be served. 

 

SIRO = Service in random order. 

 

GD = General discipline (ie, any type of 

discipline).  

 

To illustrate the use of the notation, the 

model (M / D / 10): (GD / 20 / q) uses Poisson 

arrivals (or time between exponential arrivals), 

constant service time, and 10 parallel servers. 

The discipline in queues is GD, and there is a 

limit of 20 clients throughout the system.  

 

 

The font size from which customers 

arrive is infinite. 

 

As a historical note, the first three 

elements of the notation (a / b / c) were devised 

by D.G. Kendall in 1953, and they are known in 

the literature as Kendall's notation. In 1966, 

A.M. Lee added the symbols d and e to the 

notation. This author added the last element, the 

symbol f, in 1968. 

 

Measures of steady state performance 

 

The most commonly used performance 

measures in a queue situation are: 

 

Ls = Expected number of customers in a 

system. 

 

Lq = Expected number of customers in a 

queue. 

 

Ws = Timeout in the system. 

 

Wq = Early waiting time in the queue. 

 

Ĉ = Expected number of busy servers.  

 

Remember that the system includes both 

the queue and the service facilities. We now 

demonstrate how these measurements are 

derived (directly or indirectly) from the 

probability of a stable state of n in the pn system 

as Eq. (17) 

 

𝐿𝑠 = ∑ 𝑛𝑝𝑛∞
𝑛−1                (17) 

 

Eq. (18) 

 

𝐿𝑞 = ∑ (𝑛 − 𝑐)𝑃𝑛∞
𝑛=𝑐+1               (18) 

 

The relationship between Ls and Ws 

(also between Lq and Wq) is known as Little's 

formula and is given as Eq. (19): 

 

𝐿𝑠 = 𝜆𝑒𝑓𝑒𝑐𝑊𝑠               (19) 

 

Eq. (20) 

 

𝐿𝑞 = 𝜆𝑒𝑓𝑒𝑐𝑊𝑞               (20) 
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These relationships are valid under rather 

general conditions. The λefec parameter is the 

effective arrival rate to the system. It is equal to 

the arrival rate λ (nominal) when all arriving 

customers can join the system. Otherwise, if 

some clients cannot join because the system is 

full (for example a parking lot), then λefec <λ. 

Later we will demonstrate how λefec is 

determined. There is also a direct relationship 

between Ws and Wq. By definition (Early 

waiting time in the system) = (early waiting time 

in the queue) + (operating time operated). 

 

This translates as Eq. (21): 

 

Ws= Wq + 1/μ              (21) 

 

Then we can relate NO to La by 

multiplying both sides of the last formula by 

λefec, which together with the Little da formula: 

Eq. (22) 

 

Ls = Lq + λefec/ μ              (22) 

 

The difference between the average 

amount in the system, Ls, and the average 

amount in the queue, Lq must be equal to the 

average number of servers occupied. Thus Eq. 

(23) 

 

ĉ = 𝐿𝑠 − 𝐿𝑞 =
𝜆𝑒𝑓𝑒𝑐

𝜇
               (23) 

 

Se deduce que (Installation use) = ĉ/c.  

 

Single Server Models 

 

Two models are presented for the case of a single 

server (c = 1). The first model does not limit the 

maximum number in the system, and the second 

represents a finite system limit. Both models 

assume an infinite capacity of the source. 

Arrivals occur at the rate of λ clients per unit of 

time and the service rate is μ clients per unit of 

time. (M/M/1): (GD/q/q). Using the general 

model notation, we have 

 
𝜆𝑛=𝜆
𝜇𝑛=𝜇

}, 𝑛 = 0,1,2, …  

 

Even, λefec = λ and λ lost = 0, because 

all clients can join the system. 

 

If p = λ / μ, the expression for Pn in the 

generalized model is reduced to  

𝑃𝑛 = 𝑝𝑛𝑃0, 𝑛 = 0,1,2, … 

 

To determine the value of p0 we use the identity 

Eq. (24) 

 

𝑝0(1 + 𝑝 + 𝑝2 + ⋯ ) = 1            (24) 

 

The sum of the geometric series is (1 / 1- 

p), provided that p <1. Therefore 𝑃0 = 1 −
𝑝, 𝑝 < 1 Consequently, the following geometric 

distribution gives the general formula for pn Eq. 

(25) 

 

𝑃𝑛 = (1 − 𝑝)𝑝𝑛, 𝑛 = 1,2, … (𝑝 < 1)            (25) 

 

The mathematical derivation of pn 

imposes the condition p <1, or λ <μ. If λ ≥ λ, the 

geometric series diverges, and the steady state 

probabilities pn do not exist. This result makes 

intuitive sense, because unless the service rate is 

greater than the arrival rate, the length of the 

queue will continue to grow and no stable state 

can be reached. The performance measure Lq is 

derived as follows Eq. (26): 

 

𝐿𝑠 = ∑ 𝑛𝑃𝑛 = ∑ 𝑛∞
𝑛=0 (1 − 𝑝)𝑝𝑛∞

𝑛=0
         (26) 

 

= (1 − 𝑝)𝑝
𝑑

𝑑𝑝
∑ 𝑝𝑛∞

𝑛=0   

 

= (1 − 𝑝)𝑝
𝑑

𝑑𝑝
(

1

1−𝑝
) =

𝑝

1−𝑝
  

 

(M/M/1): (GD/N/ ). This model differs 

from (M / M / 1): (GD / q / q) in that there is a 

limit N on the number in the system (maximum 

queue length = N - 1). Some examples include 

manufacturing situations where a machine can 

have a limited intermediate space and a service 

window in your car in a fast food restaurant. 

New arrivals are not allowed when the number 

of customers in the system reaches N. Therefore,  

𝜆𝑛 = {
𝜆, 𝑛 = 0,1, … , 𝑁 − 1

0,             𝑛 = 𝑁, 𝑁 + 1    
  

𝜇𝑛 = 𝜇, 𝑛 = 0,1, …  

 

Using p = λ / μ, the generalized model of 

the section gives: 

 

𝑛 = {
𝑝𝑛𝑝0,                       𝑛 ≤ 𝑁
0,                             𝑛 > 𝑁 

  

 

The value of p0 is determined from the 

equation ∑ 𝑃𝑛∞
𝑛=0  = 1, which gives Eq. (27) 

 

𝑃0(1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑁) = 1             (27) 

 

O Eq. (28) 
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𝑃𝑛 {

(1−𝑝)𝑝𝑛

1−𝑝𝑁+1 , 𝑝 ≠ 1

(1−𝑝)𝑝𝑛

1−𝑝𝑁+1
, 𝑝 = 1

}, 𝑛 = 0,1, … , 𝑁             (28) 

 

The value of p = λ / μ does not have to be 

less than 1 in this model, because the limit N 

controls the arrivals to the system. This means 

that λefec is the rate that matters in this case. 

Because customers get lost when there is N in 

the system, then,  

 

𝜆𝑝𝑒𝑟𝑑𝑖𝑑𝑎 = 𝜆𝑝𝑛 

𝜆𝑒𝑓𝑒𝑐 =  𝜆 −  𝜆𝑝𝑒𝑟𝑑𝑖𝑑𝑎 = 𝜆(1 − 𝑃𝑁) 

 

In this case, λefec <μ. 

 

The expected number of customers in the 

system is calculated as: Eq. (29) 

 

𝐿𝑠 = ∑ 𝑛𝑃𝑛𝑁
𝑛=0                (29) 

 

=
1−𝑝

1−𝑝𝑁+1
∑ 𝑛𝑝𝑛𝑁

𝑛=0   

= (
1−𝑝

1−𝑝𝑁+1) 𝑝
𝑑

𝑑𝑝
∑ 𝑝𝑛𝑁

𝑛=0   

=
(1−𝑝)𝑝

1−𝑝𝑁+1

𝑑

𝑑𝑝
(

1−𝑝𝑁+1

1−𝑝
)  

=
𝑝[1−(𝑁+1)𝑃𝑁+𝑁𝑝𝑁+1]

(1−𝑝)(1−𝑝𝑁+1)
, 𝑝 ≠ 1  

 

Multi-server models 
 

Three queue models with several parallel servers 

are considered. The first two models are the 

versions of several servers. The third model 

deals with the case of self-service, which is 

equivalent to having an infinite number of 

parallel servers. (M/M/c):(GD/∞/∞). This 

model deals with c identical parallel servers. The 

arrival rate is λ and the service rate per server is 

μ. In this situation λefec = λ because there is no 

limit on the number present in the system. 

 

The effect of using c parallel identical 

servers is a proportional increase in the service 

rate of the installation. In terms of the 

generalized model, λn and μn are therefore 

defined as:  

 

𝜆𝑛 = 𝜆,   𝑛 ≥ 0  

𝜇𝑛 = {
𝑛𝜇, 𝑛 < 𝑐
𝑐𝜇, 𝑛 ≥ 𝑐

  

 

So, Eq. (30) 

 

𝑃𝑛 = {

𝜆𝑛

𝜇(2𝜇)(3𝜇)…(𝑛𝜇)
𝑃0 =

𝜆𝑛

𝑛!𝜇𝑛
𝑃𝑜 =

𝑝𝑛

𝑛!
𝑃0,                𝑛 < 𝑐

𝜆𝑛

(Π𝑖=1
𝑐 𝑖𝜇)(𝑐𝜇)𝑛−𝑐

𝑃0 =
𝜆𝑛

𝑐!𝑐𝑛−𝑐𝜇𝑛
𝑃𝑜 =

𝑝𝑛

𝑐!𝑐𝑛−𝑐
𝑃0,   𝑛 ≥ 𝑐

          (30) 

 

If p = λ / μ, and assuming that p / c <1, 

the value of p0 is determined from, ∑ 𝑝𝑛 = 1∞
𝑛=0  

which gives, Eq. (31) 

 

𝑃0 {∑
𝑝𝑛

𝑛!

𝑐−1
𝑛=0 +

𝑝𝑐

𝑐!
∑ (

𝑝

𝑐
)∞

𝑛=0 𝑛 − 𝑐} − 1  

= {∑
𝑝𝑛

𝑛!

𝑐−1
𝑛=0 +

𝑝𝑐

𝑐!
(

1

1−
𝑝

𝑐

)} − 1,
𝑝

𝑐
< 1             (31) 

 

The expression for Lq is determined as 

follows Eq. (32): 

 

𝐿𝑞 = ∑ (𝑛 − 𝑐)
∞

𝑛=𝑐
𝑃𝑛              (32) 

 

= ∑ 𝑘𝑃𝑘 + 𝑐∞
𝑘=0   

= ∑ 𝑘∞
𝑘=0

𝑝𝑘+𝑐

𝑐𝑘𝑐!
𝑃0  

=
𝑝𝑐+1

𝑐!𝑐
𝑃0 ∑ 𝐾∞

𝐾=0 (
𝑝

𝑐
) 𝑘 − 1  

=
𝑝𝑐+1

𝑐!𝑐
𝑃0

𝑑

𝑑(
𝑝

𝑐
)

∑ (
𝑝

𝑐
)∞

𝐾=0 𝑘  

=
𝑝𝑐+1

(𝑐−1)!(𝑐−𝑝)2 𝑃𝑜  

 

Because λefec = λ, Ls = Lq + p. The 

measures Ws and Wq are determined by 

dividing Ls and Lq by λ. 

 

Methodology  

 

In order to meet the main objective of the 

project, it was first described the processes that 

are carried out related to container transfers and 

the customs control area. Below is a table 

representing the number of transfers made from 

January to December for four years. 

 
Year July Aug Sep Oct Nov Dec 

2018 115 90 171 142 224 248 

2017 45 88 47 29 51 52 

2016 137 95 25 31 181 90 

2015 95 70 85 110 102 97 

Total 392 343 328 312 558 487 

Year July Aug Sep Oct Nov Dec 

2018 239 224 247 578 0 0 

2017 46 90 156 112 119 124 

2016 105 78 40 91 69 64 

2015 113 139 229 247 254 127 

Total 503 531 672 1028 442 315 

 
Table 1 List of transfers made during 4 years 
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On the other hand, it was also necessary 

to observe the distribution of the containers in 

the yard, or, in the warehouse in case they 

required a service requested by the customer. 

They are stowed as follows:  

 

• Three tall containers. 

 

• They accommodate for days.   

 

When they are downloaded to the 

warehouse they are distributed as follows:  

 

• 13 containers per ship. 

 

• They are placed from ship one to three for 

any service to perform.   

 

The transfer time per container is 40 

minutes to 1 hour depending on the position in 

which the container is located in the terminal 

from which it will be sent. A tract can transfer 

two 20-foot containers on its flat. A unit lasts in 

the module five minutes, which is what it takes 

to register: 

 

• Check container seal against article 15. 

 

• It is linked to the reference. 

 

• Income and notification of sicrefis.  

 

Based on the research carried out, it was 

found that the main problem is originated in the 

transfer of transfers normally for the entry of a 

unit takes half an hour to forty minutes but lately 

it took more than an hour to transfer a container 

and an increase of Containers which generated 

more time and more costs to customers so it was 

decided to implement the model of a single 

server and several servers to observe the level of 

service and observe the profitability of the 

company. The single server model will be used. 

It was applied to the following times.  

 

Single server model 

 

Model applied at forty minutes 

 

We will convert the minutes to hours.  

 

𝑋 =  
5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∗ 1 ℎ𝑜𝑢𝑟 

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
=  

5 ℎ𝑜𝑢𝑟𝑠

60
= 0.08 ℎ𝑜𝑢𝑟𝑠.    

 

𝑋 =  
40 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∗ 1 ℎ𝑜𝑢𝑟 

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
=  

40 ℎ𝑜𝑢𝑟𝑠

60
= 0.66 ℎ𝑜𝑢𝑟𝑠.   

 

𝜆 =
1

0.66 ℎ
= 1.5 ≈ 2 𝑢𝑛𝑖𝑡𝑠.   

 

𝜇 =
1

5 𝑚𝑖𝑛.
= 0.20

𝑢𝑛𝑖𝑡𝑠

𝑚𝑖𝑛
(

60 𝑚𝑖𝑛

ℎ𝑜𝑢𝑟
) = 12 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟.   

 

A) Average number of units in the system.  

 

𝐿𝑠 =
𝜆

𝜇−𝜆
=

2

12−2
=

2

10
= 0.2 ≈ 0 𝑢𝑛𝑖𝑡𝑠.  

 

B) Total time consumed by a unit in the 

module.  

 

𝑊𝑠 =
1

𝜇−𝜆
=

1

12−2
=

1

10
= 0.1 ℎ𝑜𝑢𝑟.   

 

C)  System Usage Factor.   

 

𝑝 =
𝜆

𝜇
=

2

12
= 0.166 ∗ 100 = 16.6%   

 

D) Average number of units queuing.  

 

𝐿𝑞 =
𝜆2

𝜇(𝜇−𝜆)
=

22

12(12−2)
=

4

120
= 0.03 ≈ 0 𝑢𝑛𝑖𝑡𝑠.  

 

E) Probability that the module is empty.  

 

𝑝𝑜 = 1 − 𝑝 = 1 − 0.166 = 0.833 ∗ 100 =
83.3%  

 

F) Probability that two units are found in the 

system.  

 

𝑃2 = (1 − 0.1666)(0.1666)2 = 0.023 ∗
100 = 2.31%   
 

G) Time in which customers wait in line.  

 
𝑊𝑞 =

𝜆

𝜇(𝜇−𝜆)
=

2

12(12−2)
=

2

120
= 0.01666666 ∗ 60 = 1 𝑚𝑖𝑛𝑢𝑡𝑒.  

 

Model applied in half an hour 

 

We will convert the minutes to hours 

 

𝑋 =  
5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∗ 1 ℎ𝑜𝑢𝑟 

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
=  

5 ℎ𝑜𝑢𝑟𝑠

60
= 0.08 ℎ𝑜𝑢𝑟𝑠.    

 

𝑋 =  
30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ∗ 1 ℎ𝑜𝑢𝑟 

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
=  

30 ℎ𝑜𝑢𝑟𝑠

60
= 0.50 ℎ𝑜𝑢𝑟𝑠.   

 

𝜆 =
1

0.50 ℎ
= 1.5 ≈ 2 𝑢𝑛𝑖𝑡𝑠.   

 

𝜇 =
1

0.08 ℎ
= 13 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟.   

 

A) Average number of units in the system 
   

𝐿𝑠 =
𝜆

𝜇−𝜆
=

2

13−2
=

2

11
= 0.18 ≈ 0 𝑢𝑛𝑖𝑡𝑠.  
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B)  time consumed by a unit in the module.  

 

𝑊𝑠 =
1

𝜇−𝜆
=

1

13−2
=

1

11
= 0.09 ℎ𝑜𝑢𝑟.   

 

C) System Usage Factor.  

 

𝑝 =
𝜆

𝜇
=

2

13
= 0.1538 ∗ 100 = 15.38%   

 

D) Average number of units queuing.  

 

𝐿𝑞 =
𝜆2

𝜇(𝜇−𝜆)
=

22

13(13−2)
=

4

143
= 0.027 ≈ 0 𝑢𝑛𝑖𝑡𝑠.  

 

E) E) Probability that the module is empty.  

 
𝑝𝑜 = 1 − 𝑝 = 1 − 0.1538 = 0.8462 ∗ 100 = 84.62 %  
 

F) Probability that two units are found in the 

system.  

 
𝑃2 = (1 − 0.1538)(0.1538)2 = 0.0199 ∗ 100 = 1.99 %   
 

G) Time in which customers wait in line.  

 
𝑊𝑞 =

𝜆

𝜇(𝜇−𝜆)
=

2

13(13−2)
=

2

143
= 0.0139 ∗ 60 = 0.83 ℎ𝑜𝑢𝑟 ≈ 1 𝑚𝑖𝑛𝑢𝑡𝑒.  

 

Multi-server model  

  

With two servers 

 

a) Probability that no unit is in the system.  

 

𝑃0 =
1

∑
(

𝜆
𝜇

)𝑛

𝑛!
+

(
𝜆
𝜇

)𝑠

𝑠!
[

1

1−(
𝜆

𝑠𝜇
)
]𝑆−1

𝑛=0

  

 

𝑃0 =
1

∑
(

4
12)˄𝑛

𝑛!
+

(
4

12)˄2

2!
[

1

1−(
4

2∗12
)
]1

𝑛=0

   

 

𝑃0 =
1

(
4

12
)˄0

0!
+

(
4

12
)˄1

1!
+

(
4

12
)˄2

2!
[

1

1−
4

24

]

  

𝑃0 =
1

1+0.3333+0.0555(
1

1−0.1666
)

= 0.7248  

 

b) Average number of units in the system.  

 

𝐿𝑠 =  
𝜆𝜇(

𝜆

𝜇
)˄𝑠𝑃0

(𝑠−1)!(𝑠𝜇−𝜆)˄2
+

𝜆

𝜇
  

 

𝐿𝑠 =  
4(12)(

4

12
)˄2(0.7248)

(2−1)!(2(12)−4)˄2
+

4

12
  

 

𝐿𝑠 =  
48(0.3333)˄2(0.7248)

400
+ 0.3333 = 0.3429 𝑢𝑛𝑖𝑡𝑠.  

 

c) Average time in which a unit is within the 

system.  

 

𝑤𝑠 =
0.3429

4
= 0.0857 ℎ𝑜𝑢𝑟𝑠.  

 

d) Number of units in the row.  

 

𝐿𝑞 = 𝑃0 [
(

𝜆

𝜇
)˄𝑠+1

(𝑠−1)!(𝑠−
𝜆

𝜇
)˄2

]  

𝐿𝑞 = 0.7248 [
0.33333

(1)(2−0.3333)˄2
]  

𝐿𝑞 = 0.7248 [
0.0370

2.7778
] = 0.1449 𝑢𝑛𝑖𝑡𝑠.  

 

e) Waiting time in line.  

 

𝑊𝑞 = 𝑤𝑠 −
1

𝜇
= 0.0857 −

1

12
= 0.002 ℎ𝑜𝑢𝑟𝑠.  

 

 Model with four servers 

 

a) Probability that no unit is in the system.  

 

𝑃0 =
1

∑
(

𝜆
𝜇

)𝑛

𝑛!
+

(
𝜆
𝜇

)𝑠

𝑠!
[

1

1−(
𝜆

𝑠𝜇
)
]𝑆−1

𝑛=0

  

𝑃0 =
1

∑
(

5
12

)˄𝑛

𝑛!
+

(
5

12
)˄4

4!
[

1

1−(
5

4∗12
)
]3

𝑛=0

   

 

𝑃0 =
1

(
5

12
)˄0

0!
+

(
5

12
)˄1

1!
+

(
5

12
)˄2

2!
+

(
5

12
)˄3

3!
+

(
5

12
)˄4

4!
[

1

1−
5

48

]

  

𝑃0 =
1

1+0.4166+0.0868+0.0120+0.0012(
1

1−0.1041
)

= 0.6594  

 

b) Average number of units in the system.  

 

𝐿𝑠 =  
𝜆𝜇(

𝜆

𝜇
)˄𝑠𝑃0

(𝑠−1)!(𝑠𝜇−𝜆)˄2
+

𝜆

𝜇
  

𝐿𝑠 =  
5(12)(

5

12
)˄4 (0.6594)

(4−1)!(4(12)−5)˄2
+

5

12
  

𝐿𝑠 =  
60(0.4166)˄4(0.6594)

11,094
+ 0.4166 =

0.4167 𝑢𝑛𝑖𝑡𝑠.  
 

c) Average time in which a unit is within the 

system.  

 

𝑤𝑠 =
0.4167

5
= 0.0833 ℎ𝑜𝑢𝑟𝑠.  

 

d) Number of units in the row.  

 

𝐿𝑞 = 𝑃0 [
(

𝜆

𝜇
)˄𝑠+1

(𝑠−1)!(𝑠−
𝜆

𝜇
)˄2

]  
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𝐿𝑞 = 0.6594 [
0.41665

(6)(4−0.4166)˄2
]  

 

𝐿𝑞 = 0.6594 [
0.0125

77.0412
] = 0.0001 𝑢𝑛𝑖𝑡𝑠.  

 

e) Waiting time in line.  

 

𝑊𝑞 = 𝑤𝑠 −
1

𝜇
= 0.0833 −

1

12
= 0 ℎ𝑜𝑢𝑟𝑠.  

 

Results 

 

When carrying out the transfer of the containers 

by transfer, different times were usually carried 

out, but lately they were delayed to 1 hour 20 

minutes which generated more costs since it 

caused the delay in the operations. Therefore, the 

model of a single server was applied at different 

times to analyze the behavior of said transfers 

and observe how long the unit is registered in 

order to enter the warehouse or yard where the 

download is carried out according to the service 

programmed by the client. The multi-server 

model was also developed. 

 

Model applied at forty minutes 

 

Landa throws us that it is possible to enter two 

units per hour and mu indicates the speed at 

which the server can serve units which threw us 

12 units per hour, the average number of units in 

the system throws us 0 units, the time that 

provides the module to serve a unit is six minutes 

per unit, there is 16.6% of the system being in 

use when a unit arrives and 0 units would be 

queuing in the system since the unit present in 

module will be attended and the possibility 

arises that the system is empty with 83.3% and 

gives us a 2.31% probability that two units are 

found in the system.  

 

Model applied in half an hour 

 

Landa tells us that two units can be served per 

hour and mu represents that 13 units can be 

served per hour and there are 0 units in the 

system and the time elapsed by registering a unit 

is 5 minutes and there is a 15.83 % probability 

that the system is in use and that no unit is found 

in the system lining up and there is 84.62% that 

the input module is empty when a unit is being 

entered and with a 1.62% probability that two 

units are found in the system.   

 

 

With this resolution in methods there is 

not a big difference in the time of forty minutes 

and half an hour, so it will be possible to enter 

between that time the number of transfers during 

an eight hour shift, which reduces the costs to 

customers by operators, machinery and units 

used in overtime. If the arrival speed of units 

were greater than the service speed, what would 

cause the queue to grow infinitely and the system 

would become saturated and cause the service to 

be delayed and more costs will be generated due 

to delayed operation. The multi-server model 

was also applied to analyze the level of service 

since the organization only has one server. The 

multi-server model was applied to two servers 

and to four servers performing the analysis, the 

proposal is given:  

 

• Have two servers to meet the demand for 

service. 

 

• Acquire two more units for the transfer of 

containers by transfer or loose cargo. 

 

• Hire the services of a carrier when there 

is a high number of transfers.   

 

By acquiring two more units you would 

already have four units and over time you can 

save the costs of contracting the services of a 

third party to cover the demand for transfers and 

you can also provide the service of moving 

empty containers from terminal to terminal, the 

number of customers will be increased and 

revenues would increase to 40% over a period of 

two years.  

 

By having two servers, you avoid 

generating a long line of units waiting for their 

entry either transfer, loose cargo, vehicles, 

container dispatch, the more this generates a 

bottleneck and therefore the operation is 

delayed.  

 

Conclusion 

 

After analyzing the possible models to be 

developed and carrying out the application of the 

mathematical models of the theory of selected 

queues that for this case was of one server and 

several servers, it was possible to analyze the 

time in which it is carried out the registration of 

a unit in modules, the waiting times, the 

possibilities that the system is empty, that a 

bottleneck may arise.  
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Also, the possibilities of increasing the 

number of customers and improving the level of 

service provided and keeping a better control in 

all the developed processes were found, 

allowing a better fluidity in the input and output 

modules, as well as in the operational area. By 

having two servers, the waiting time in the units 

is reduced by 30%, there is even a 70% chance 

that when a unit is present, no unit is found on 

the server and there are not many delays in the 

service provided to the clients and it is finished 

in a timely manner and it is possible not to 

generate more time and more costs to the client 

and the bottlenecks are eliminated.  
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