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Abstract 

 

The homogeneity degree of a space 𝑋 is the number of 

orbits under the action of the group of 

homeomorphisms of 𝑋 in 𝑋. The smaller the 

homogeneity degree, the more homogeneous the 

space, in fact, having a homogeneity degree 1 is 

equivalent to being homogeneous. Another way to 

measure the homogeneity of a space is to use 𝑛-

homogeneity and 𝑛-homogeneity at a point. Our work 

focuses on spaces called continua (metric, compact 

and connected spaces), studying the relationship 

between these three types of homogeneity mentioned, 

as well as their interaction with the local 

connectedness, the indecomposability and cut points 

of the continuum. We prove, among other things, that 

the 𝑛-homogeneous spaces at a point have 

homogeneity degree 1 or 2 and, when the space has 

exactly one cut point, we relate the homogeneity 

degree of the continuum with the homogeneity degree 

of the components of the complement of the cut point. 

In addition, we generalize some known results of the 

topic. 
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Resumen 

 

El grado de homogeneidad de un espacio 𝑋 es el 

número de órbitas bajo la acción del grupo de 

homeomorfismos de 𝑋 en 𝑋 .  Entre más pequeño es el 

grado de homogeneidad, más homogéneo es el 

espacio, de hecho, tener grado de homogeneidad 1 es 

equivalente a ser homogéneo. Otra manera de medir la 

homogeneidad de un espacio es utilizar la 𝑛-

homogeneidad y la 𝑛-homogeneidad en un punto. 

Nuestro trabajo se centra en los espacios llamados 

continuos (espacios métricos, compactos y conexos), 

estudiando la  relación  entre  estos los  tres  tipos  de  

homogeneidad mencionados,  así  como su  interacción  

con  la  conexidad  local,  la  indescomponibilidad  y  

los  puntos  de corte del continuo. Probamos, entre 

otras cosas, que los espacios 𝑛-homogéneos en un 

punto tienen grado de homogeneidad 1 o 2 y, cuando 

el espacio tiene  un  único  punto  de corte, 

relacionamos el grado de homogeneidad del continuo 

con el grado de homogeneidad de las componentes del 

complemento de dicho punto de corte. Además, 

generalizamos algunos resultados ya conocidos del 

tema. 

 

Continuo, Grado de homogeneidad, n-

homogeneidad, Puntos de corte 
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1.-Introduction 

 

This work is framed within the Continuum 

Theory and more specifically, in the study of 
1

𝑛
-

homogeneous continua. Research in 

homogeneous spaces is extensive in Topology. 

However, not all spaces are homogeneous and, 

even among them, it is interesting to have a 

measure of how much homogeneous is the space. 

We investigate three concepts that help us in this 

task: 
1

𝑛
-homogeneity, 𝑛-homogeneity and 𝑛-

homogeneity at a point.  

 

The study of 
1

𝑛
-homogeneous continua, for 

n>1, formally began in 1989 with H. Patkowska. 

However, it was not until few years ago that this 

topic has gained momentum, gaining the interest 

of researchers in Continuum Theory. Most of the 

papers written in recent years focus on the study 

of 
1

2
-homogeneity.  

 

In this work we study the three notions of 

homogeneity we mentioned, each one separately, 

and the relationship between them; as well as the 

interaction with the local connectedness, the 

indecomposability and the cut points of a 

continuum. 

  

Section 2 is devoted to the definitions, the 

notation and the basic and general theorems that 

we will use. Section 3 is dedicated to 
1

𝑛
-

homogeneous spaces. We define, among other 

notions, the homogeneity degree of a space, 
1

𝑛
-

homogeneous space and orbits of a space. We also 

prove general results on this topic.  

 

In section 4 we adapt, for 𝑛-homogeneous 

spaces at a point, theorems that holds for 𝑛-

homogeneous spaces, and generalize other known 

results. In Theorems 4.4 and 4.7 we prove that the 

𝑛-homogeneous or 𝑛-homogeneous spaces at a 

point have 1 or 2 as homogeneity degree, and are 

decomposable for 𝑛 ≥ 2. Theorems 4.8 to 4.10 

relate the homogeneity degree of a space with the 

𝑛-homogeneity and the 𝑛-homogeneity at a point. 

In section 5 we study the interaction of these 

concepts with the local connectedness.  

 

In section 6 we present two easy results that 

show the relationship between the different types 

of homogeneity we have considered, when one of 

the orbits of the space is degenerate.  

 

Finally, in section 7 we study 
1

𝑛
-homogeneous 

continua with exactly one cut point. Theorem 7.1 

shows a relation between the orbits of the 

continuum and the orbits of the components of the 

complement of the cut point. Corollary 7.10 gives 

an example of a 
1

3
-homogeneous continuum that is 

obtained by gluing copies of the same 

homogeneous and locally connected continuum. 

 

2.-Preliminaries 

 

We will denote by ℕ to the set of natural numbers.  If   

𝐴 is a set, its cardinality is denoted by |𝐴|. We say that 

𝐴 is degenerated if |𝐴| = 1  and, in any other case, 𝐴 

is non degenerated. Let 𝑋 be a space and 𝐴 ⊂ 𝑋. 

We will denote by 1𝑋 the identity map on 𝑋, by 

𝐶𝑙𝑋  (𝐴) and by 𝐼𝑛𝑡𝑋 (𝐴) the closure  and the 

interior of 𝐴 in 𝑋, respectively. If 𝑋 is a metric 

space, 𝑑𝑖á𝑚(𝐴) is the diameter of 𝐴, and if 𝑓 is 

a function wih domain 𝑋,  by 𝑓|𝐴 we denote the 

restriction of 𝑓 to the set 𝐴. 

 

Throughout this work, all the spaces are 𝑇1 
and, in general, continua. A continuum is a metric, 

compact, connected and, for this paper, with 

more than one point. If 𝑋 is a continuum, a 

subcontinuum of 𝑋 is a closed, connected and non 

empty subset of 𝑋. We will denote by 𝐼 the unit 

interval [0, 1]. Continua homeomorphic to 𝐼 are 

called arcs.  If  𝐴 is an arc and  ℎ is a 

homeomorphism between 𝐼 and 𝐴, the end points 

of 𝐴 are ℎ(0) y ℎ(1). 
 

Let 𝑋 be a topological space. If 𝑥 ∈  𝑋, we 

say that 𝑋 is locally connected at 𝑥, if for each open 

set 𝑈 having 𝑥, there is an open and connected 

subset 𝑉 of 𝑋 that contains x and is contained in 𝑈. 

The space 𝑋 is locally connected if 𝑋 is locally 

connected at each one of its points. We say that the 

space 𝑋 is connected im kleinen (or cik) at the point 

𝑥 ∈ 𝑋, if for every open set 𝑈 containing 𝑥, there is 

a connected subset 𝑉 of 𝑋  having 𝑥 in its interior 

and it is contained in 𝑈. Finally, 𝑋 is arcwise 

connected if for each pair of points 𝑝 and 𝑞 in 𝑋, 

there is an arc whose ends are 𝑝 and 𝑞. 

 

Clearly, if 𝑋 is locally connected at 𝑥, then 𝑋 

is connected im kleinen at 𝑥. The other implication 

is not always true, see for example Theorem 7.6 

(Pacheco, 2009, p.69). However, it is known that a 

space is locally connected if and only if it is cik at 

all of its points (Theorem 7.8, Pacheco, 2009, p.73). 
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Let 𝑋 be a continuum that is not cik at some 

point 𝑥. From Theorem 5.12 (Nadler, 1992, p.76) 

we deduce that there exists a non-degenerate 

subcontinuum 𝐾 of 𝑋 that contains 𝑥 and such that 

𝑋  is not cik at each point of 𝐾. So, if a continuum 

it is not cik at a point, then it is not cik at 

uncountably many points. 

 

In Theorem 4.2 (Dugundji, 1966, p.123) 

locally connected spaces are characterized as 

those in which the components of the open sets 

are open sets. Throughout the present work, we 

will use these results in more than one occasion. 

 

The proof of the following Theorem can be 

found in Theorem 3.3 (Dugundji, 1966, p.121). 

 

Theorem 2.1 

Let 𝑓: 𝑋 → 𝑌 be a homeomorphism between metric 

spaces 𝑋 and 𝑌. If 𝐴 is a component of a subset 𝐶 

of 𝑋, then 𝑓(𝐴) is a component of 𝑓(𝐶). 

 

Theorem 2.2 

Let 𝑋 be a metric and compact space, 𝐴 and 𝐵 

two non closed subsets of 𝑋, and 𝑐, 𝑑 in 𝑋 

such that 𝐶𝑙𝑋(𝐴)  =  𝐴 ∪ {𝑐} and 𝐶𝑙𝑋(𝐵)  =
 𝐵 ∪ {𝑑}. If 𝑓: 𝐴 →  𝐵 is a homeomorphism, 

then 𝑔: 𝐶𝑙𝑋(𝐴) → 𝐶𝑙𝑋(𝐵) defined for each x ∈
 ClX(A) by 

 

𝑔(𝑥) = {
𝑓(𝑥), 𝑖𝑓 𝑥 ∈ 𝐴;

𝑑, 𝑖𝑓 𝑥 = 𝑐
  

 

is a homeomorphism extending  𝑓. 

 

Proof 

Since 𝑓 is a bijective function, clearly 𝑔 is also 

bijective. To see that 𝑔 is continuous, we only 

need to prove that it is continuous at 𝑐. For this, 

suppose that {𝑎𝑛}𝑛 is a sequence of points in 

𝐶𝑙𝑋(𝐴) converging to c and {𝑔(𝑎𝑛)}𝑛 converges 

to a point 𝑏 ∈  𝐶𝑙𝑋(𝐵). We want to see that 𝑏 =
 𝑑. Suppose that 𝑏 ∈  𝐵 and put 𝑎 =  𝑔−1(𝑏)  =
 𝑓−1(𝑏). Note that 𝑎 ∈  𝐴. Without loss of 

generality suppose that each 𝑎𝑛 ∈ 𝐴,  this implies 

that 𝑔(𝑎𝑛) = 𝑓(𝑎𝑛). Since 𝑓−1 is a 

homeomorphism from 𝐵 to 𝐴 and {𝑓(𝑎𝑛)}𝑛 is a 

sequence in 𝐵 whose limit is also in B, from 

Proposition 6.1.5 (Margalef, 1979, p.6) we 

obtain: 

 

𝑎 = 𝑓−1 ( lim
𝑛→∞

𝑓(𝑎𝑛)) = lim
𝑛→∞

𝑓−1(𝑓(𝑎𝑛))    = lim
𝑛→∞

𝑎𝑛 = 𝑐   

 

 

 

 

This implies that 𝑐 =  𝑎, and since 𝑎 ∈  𝐴, 𝑐 

is an element of 𝐴. Thus, 𝐴 is closed in 𝑋. From this 

contradiction, we conclude that 𝑏 =  𝑑 =  𝑔 (𝑐). 
Hence 𝑔 is continuous at 𝑐. As 𝑔 is a function from 

a compact space to a metric space, it is closed and 

thus, it is a homeomorphism. □ 

 

The first part of the following result is known 

as the Boundary Bumping Theorem. Its proof can 

be found in Theorem 5.6 of (Nadler, 1992, p.74). 

The second part is a consequence of the first, and 

its proof can be found in Corollary 5.9 (Nadler, 

1992, p.75). 

 

Theorem 2.3 

Let 𝑋 be a continuum and 𝐸 a non empty proper 

subset of 𝑋. Then the following statements hold. 

 

1. If A is a component of E; then ClX(A) ∩
 ClX(X –  E) ≠  ∅. 

2. If 𝐸 is a subcontinuum of 𝑋 and 𝐴 is a 

component of 𝑋 − 𝐸, then 𝐴 ∪ 𝐸 is a 

subcontinuum of 𝑋. 

 

Let 𝑋 be a connected space. We say that  𝑐 ∈
𝑋 is a cut point of 𝑋 if 𝑋 − {𝑐} is not connected. The 

symbol 𝐶𝑢𝑡(𝑋) will denote the set of cut points of 

𝑋 (note that 𝐶𝑢𝑡(𝑋) could be empty).  If 𝑐 ∈  𝑋, 
by 𝒜𝑐  we denote the family of the components of  

𝑋 −  {𝑐}. 

 

The following result shows properties of the 

components of the complement of a cut point in a 

topological space. Recall that two non-empty sets 

𝐻 and 𝐾 of a space 𝑋 are mutually separated if the 

closure of 𝐻 does not intersect 𝐾 and the closure of 

𝐾 does not intersect 𝐻. It is known that a space 𝑋 is 

connected if and only if there are not two mutually 

separated sets whose union is 𝑋.  
 

Theorem 2.4 

Let 𝑋 be a continuum and 𝑐 ∈  𝑋. For each 

component 𝐴 of 𝑋 −  {𝑐}  the following properties 

hold. 

 

1. 𝐶𝑙𝑋(𝐴) = 𝐴 ∪ {𝑐} and 𝐶𝑢𝑡(𝐶𝑙𝑋(𝐴)) ⊂  𝐴. 

2. If 𝐴 is open in 𝑋, then every cut point of 

𝐶𝑙𝑋(𝐴) is a cut point of 𝑋 . 

3. If 𝐶𝑢𝑡(𝑋)  =  {𝑐} and A is open in 𝑋 , then 

𝐶𝑙𝑋(𝐴) is a subcontinuum of 𝑋 without cut 

points (of itself). 
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Proof 

Let 𝐴 be a component of 𝑋 −  {𝑐}. Since 𝑋 −  {𝑐} 

is a proper, non-empty subset of 𝑋; by part 1 of 

Theorem 2.3 (applied to 𝐸 =  𝑋 −  {𝑐}), it 

happens that 

 
∅ ≠ 𝐶𝑙𝑋(𝐴)  ∩  𝐶𝑙𝑋(𝑋 − (𝑋 − {𝑐}) = 𝐶𝑙𝑋(𝐴) ∩ {𝑐}.   
 

Then 𝑐 ∈  𝐶𝑙𝑋(𝐴) and 𝐴 ∪  {𝑐}  ⊂ 𝐶𝑙𝑋 (𝐴). 

From part 2 of Theorem 2.3 (applied to 𝐸 =  {𝑐}), 

we obtain  𝐴 ∪ {𝑐} is a subcontinuum of 𝑋. This 

proves that 𝐶𝑙𝑋(𝐴) =  𝐴 ∪ {𝑐}. Now suppose that 

𝑎 is a cut point of 𝐶𝑙𝑋 (𝐴). As 𝐶𝑙𝑋(𝐴)– {𝑐} =  𝐴 

and 𝐴 is connected, we have 𝑎 ≠  𝑐. Therefore, 

𝑎 ∈ 𝐶𝑙𝑋 − {𝑐} = 𝐴. This proves 1. Now suppose 

that 𝐴 is open in 𝑋 and  𝑎 is a cut point of 𝐶𝑙𝑋(𝐴). 

From 1, we obtain 𝑎 ∈  𝐴. Let's define 

 

𝐵 = ⋃{𝐶 ∈   𝒜𝑐: 𝐶 ≠  𝐴}.  
 

From 1, for each 𝐶 ∈  𝒜𝑐– {𝐴}, we have 

𝑐 ∈  𝐶𝑙𝑋(𝐶) ⊂  𝐶𝑙𝑋(𝐵). Since 𝐴 is open, 𝑋 −
𝐴 =  𝐵 ∪ {𝑐} is a closed subset of 𝑋 that contains 

𝐵. Then, 𝐶𝑙𝑋(𝐵)  =  𝐵 ∪  {𝑐} and, since 

𝐶𝑙𝑋 (𝐴)  =  𝐴 ∪ {𝑐} and 𝐴 ∩ 𝐵 =  ∅, we obtain 

𝐴 ∩ 𝐶𝑙𝑋(𝐵)  =  ∅ and 𝐶𝑙𝑋 (𝐴)  ∩ 𝐵 =  ∅. Now, 

since 𝑎  is a cut point of 𝐶𝑙𝑋 (𝐴), there are two 

non empty and mutually separated sets 𝐻 and 𝐾 

such that 𝐶𝑙𝑋 (𝐴)  −  {𝑎}  =  𝐻 ∪ 𝐾. Suppose 

without loss of generality that 𝑐 ∈  𝐾. Then 𝐻 ⊂
 𝐴 and 

 

𝑋 −  {𝑎} = (𝐶𝑙𝑋(𝐴) −  {𝑎}) ∪  𝐵 = (𝐻 ∪
 𝐾) ∪  𝐵 =  𝐻 ∪ (𝐾 ∪  𝐵).   
 

In addition, 𝐻 and 𝐾 ∪  𝐵 are non-empty 

subsets of X such that 

 

𝐶𝑙𝑋 (𝐻) ∩ (𝐾 ∪  𝐵)                      = 
(𝐶𝑙𝑋(𝐻) ∩  𝐾) ∪ (𝐶𝑙𝑋(𝐻) ∩  𝐵) =   
𝐶𝑙𝑋(𝐻)  ∩  𝐵 ⊂  𝐶𝑙𝑋(𝐴)  ∩  𝐵   =  ∅ 

 

And 

 

𝐻 ∩ 𝐶𝑙𝑋(𝐾 ∪  𝐵)                            =    

(𝐻 ∩  𝐶𝑙𝑋(𝐾))  ∪  (𝐻 ∩ 𝐶𝑙𝑋(𝐵)  =                         

 𝐻 ∩ 𝐶𝑙𝑋(𝐵) ⊂  𝐴 ∩  𝐶𝑙𝑋(𝐵)      =  ∅. 
 

Hence 𝑎 is a cut point of 𝑋, which  proves 

2. To see 3, suppose that 𝐶𝑢𝑡 (𝑋)  =  {𝑐},  𝐴 is a 

component of 𝑋 − {𝑐} and that  𝐴 is open in 𝑋. 

Then 𝐶𝑙𝑋 (𝐴) is a subcontinuum of 𝑋, and  from 

1 and 2, 𝐶𝑢𝑡 (𝐶𝑙𝑋 (𝐴))  ⊂ 𝐴 ∩ 𝐶𝑢𝑡 (𝑋)  =  𝐴 ∩

 {𝑐}  =  ∅. Thus, 𝐶𝑢𝑡(𝐶𝑙𝑋(𝐴)) =  ∅.□ 

 

 

3.   1/n-homogeneous spaces 

 

Given a space 𝑋, we denote by ℋ(𝑋) the group of 

homeomorphisms of 𝑋 in 𝑋. The orbit Orb(𝑥) of 𝑥 

in 𝑋 is the orbit of 𝑥 under the action of ℋ(𝑋) on 

𝑋, i.e. 

 

𝑂𝑟𝑏𝑋(𝑥)  =  {ℎ(𝑥) ∶  ℎ ∈  ℋ(𝑋)}.  
 

The family of orbits of a space 𝑋 is a partition 

of 𝑋 and a set 𝒪 is an orbit of 𝑋 if and only if there 

is 𝑥 ∈ 𝑋 such that 𝒪 = 𝑂𝑟𝑏𝑋(𝑥). 

 

The homogeneity degree is the number of 

orbits of 𝑋. Alternatively, we say that 𝑋 is 
1

𝑛
-

homogeneous to mean that 𝑋 has homogeneity 

degree 𝑛. We are interested in spaces with a finite 

homogeneity degree. The following result provides 

some additional properties of the orbits of a space. 

 

Theorem 3.1 

Let 𝑋 be a space and 𝒪 an orbit of 𝑋.  The following 

statements hold. 

 

1. If f ∈  ℋ(X),  then f (𝒪)  =  𝒪. 

2. If 𝒪1  is an orbit of X such that 𝒪 ∩ ClX(𝒪1) ≠
 ∅, then 𝒪 ⊂  ClX(𝒪1). 

3. If IntX(𝒪) ≠  ∅, then 𝒪 is open in X. 

 

Proof 

First, take 𝑧 ∈ 𝑋 such that 𝒪 = 𝑂𝑟𝑏𝑋 (𝑧).  Take 

𝑓 ∈  ℋ(𝑋) and   𝑥 ∈ 𝒪. There exists ℎ ∈  ℋ(𝑋) 

such that ℎ (𝑧)  =  𝑥. Since (𝑓 ∘ ℎ) (𝑧)  =
 𝑓 (ℎ (𝑧))  =  𝑓 (𝑥), then 𝑓 (𝑥)  ∈ 𝑂𝑟𝑏𝑋 (𝑧)  =  𝒪. 

Then, 𝑓 (𝒪)  ⊂ 𝒪 and, by a similar argument, 

𝑓−1(𝒪)  ⊂  𝒪. Therefore, 𝒪 =  𝑓 (𝒪).   

 

To see 2 let 𝑥 ∈  𝒪 and 𝑈 be an open set in 𝑋  

having 𝑥. Take 𝑦 ∈ 𝒪 ∩  𝐶𝑙𝑋 (𝒪1). There exists 

𝑓 ∈  ℋ(𝑋) such that 𝑓 (𝑥)  =  𝑦. Since 𝑓 (𝑈) is an 

open set in 𝑋 such that 𝑦 ∈ 𝑓 (𝑈) and 𝑦 ∈
 𝐶𝑙𝑋(𝒪1), it follows that 𝑓 (𝑈)  ∩ 𝒪1  ≠  ∅. From 

here, applying part 1 to the homeomorphism 𝑓−1 

we obtain 

 

∅ ≠ 𝑓−1(𝑓(𝑈) ∩ 𝒪1) = 𝑈 ∩ 𝒪1.  
 

Hence 𝑥 ∈ 𝐶𝑙𝑋(𝒪1), which  proves 2. To see 

3, take 𝑦 ∈ 𝒪 and 𝑥 ∈  𝐼𝑛𝑡𝑋(𝒪) and 𝑓 ∈ ℋ(𝑋) 

such that 𝑓 (𝑥)  =  𝑦. Then 𝑓(𝐼𝑛𝑡𝑋(𝒪)) is open in 

𝑋  and it contains 𝑦. That 𝑓(𝐼𝑛𝑡𝑋(𝒪)) ⊂ 𝑓 (𝒪) =
𝒪 follows from 1. Therefore, 𝒪 is open in 𝑋. This 

proves 3. The following theorem generalizes part 1 

of Theorem 3.1 and its proof is similar to it. 
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Theorem 3.2  

Let 𝑋 and 𝑌 be two spaces and 𝑓: 𝑋 →  𝑌 a 

homeomorphism. If 𝑧 ∈  𝑋, then 

 

𝑓(𝑂𝑟𝑏𝑋(𝑧))  =  𝑂𝑟𝑏𝑌(𝑓(𝑧)). 
 

Corollary 3.3 

Homeomorphic spaces have the same 

homogeneity degree. 

 

Theorem 3.4 

Let 𝑋 be a locally connected continuum with 

exactly one cut point 𝑐. If 𝐴 and 𝐵 are two 

homeomorphic elements of 𝒜𝑐, then there is a 

homeomorphism 𝐹: 𝑋 →  𝑋 such that 𝐹(𝐴) = 𝐵, 

𝐹(𝑐) = 𝑐 and, for each 𝑎 ∈ 𝐴 

 

𝐹(𝑂𝑟𝑏𝐴(𝑎)) =  𝑂𝑟𝑏𝐵(𝐹(𝑎))  

 

Proof 

Fix 𝐴 ∈ 𝒜𝑐. Let 𝐵 ∈ 𝒜𝑐 be homeomorphic to 𝐴. 

By the first part of Theorem 2.4, 𝐶𝑙𝑋(𝐴) = 𝐴 ∪
{𝑐} and 𝐶𝑙𝑋(𝐵) = 𝐵 ∪ {𝑐}. Since 𝐴 and 𝐵 are 

homeomorphic, by Theorem 2.2 we can choose a 

homeomorphism 𝑔: 𝐴 ∪ {𝑐}  →  𝐵 ∪  {𝑐} such 

that 𝑔(𝐴)  =  𝐵 and 𝑔 (𝑐)  =  𝑐 (if 𝐵 =  𝐴 we 

take 𝑔 as the identity). Since 𝑋 is locally 

connected and, A and B are components of 𝑋 −
{𝑐}, 𝐴 and 𝐵 are open in 𝑋. Hence 𝑋 −  (𝐴 ∪ 𝐵) 

is closed in 𝑋. Define 𝐹: 𝑋 →  𝑋 as follows: 

 

𝐹(𝑋) = {

𝑔(𝑥), 𝑖𝑓 𝑥 ∈ 𝐶𝑙𝑋(𝐴); 

𝑔−1(𝑥), 𝑖𝑓 𝑥 ∈ 𝐶𝑙𝑋(𝐵);

𝑥,   𝑖𝑓 𝑥 ∈ 𝑋 − (𝐴 ∪ 𝐵).

  

 

Clearly, 𝐹 is a homeomorphism and 𝐹(𝐴)  =  𝐵. 

Furthermore, if 𝑎 ∈ 𝐴, as 𝐹|𝐴  is a 

homeomorphism from 𝐴 to 𝐵, by Theorem 3.2, 

𝐹 (𝑂𝑟𝑏𝐴(𝑎))  =  𝑂𝑟𝑏𝐵(𝐹(𝑎)). This concludes 

our proof. □ 

 

4.  n-homogeneous spaces 

 

Definition 4.1 

Let 𝑋 be a space and 𝑛 ∈ ℕ. We say that 𝑋 is 𝑛-

homogeneous if, for each pair of sets 𝐴 and 𝐵, 

each one with exactly 𝑛 elements, there exists ℎ ∈
ℋ(𝑋) such that ℎ(𝐴)  =  𝐵. We say that 𝑋 is n-

homogeneous at a point 𝑐 ∈  𝑋 if, for each pair of 

sets A and B having 𝑐, with exactly  𝑛 elements, 

there exists ℎ ∈ ℋ(𝑋) such that ℎ(𝐴) = 𝐵 and 

ℎ (𝑐) = 𝑐. 

 

As a consequence of the following theorem, 

𝑛-homogeneity is a topological invariant. 

 

Proposition 4.2 

Let 𝑓 be a homeomorphism between 𝑋 and 𝑌, and 

𝑛 ∈  ℕ. If 𝑋 is 𝑛-homogeneous at 𝑝, then 𝑌 is 𝑛-

homogeneous at 𝑓 (𝑝). 

 

Proof 

Let 𝐴 and B be two subsets of 𝑌 with exactly 𝑛 

elements and such that 𝑓(𝑝)  ∈  𝐴 ∩ 𝐵. Note that 

𝑓−1(𝐴) and 𝑓−1(𝐵) are two subsets of 𝑋  having 𝑝, 

each one with exactly 𝑛 elements. Since 𝑋 is 𝑛-

homogeneous at 𝑝, there is a homeomorphism 

ℎ: 𝑋 →  𝑋 such that ℎ (𝑓−1 (𝐴))  =  𝑓−1 (𝐵) and 

ℎ (𝑝)  =  𝑝. Hence 𝑓 ∘ ℎ ∘ 𝑓−1: 𝑌 →  𝑌 is a 

homeomorphism, which sends 𝐴 in 𝐵 and fixes 

𝑓 (𝑝). This proves that 𝑌 is 𝑛-homogeneous at 

𝑓 (𝑝).  Note that the definition of 1-homogeneous 

space coincides with the definition of 
1

1
-

homogeneous space, these spaces are simply called 

homogeneous. Note that all spaces are trivially 1-

homogeneous at each one of their points. For this 

reason, for the study of the 𝑛-homogeneous 

continuums at a point, we will always consider 𝑛 ≥
 2. The first part of the following theorem is proved 

in Theorem 1 (Burges, 1954, p.137), while the 

second is shown in Corollary 2 (Brown, 1959, 

p.647). 

 

Theorem 4.3 

Let 𝑋 be a space and 𝑛 ∈  ℕ. If 𝑋 is 𝑛-

homogeneous, then the following statements hold. 

 

1. 𝑋 is homogeneous. 

2. If 𝑛 ≥  2, 𝑋 is (𝑛 −  1) -homogeneous. 

 

We present the corresponding version of 

Theorem 4.3, but for n-homogeneous spaces at a 

point. 

 

Theorem 4.4 

Let 𝑋 be a continuum and 𝑛 ∈  ℕ. If 𝑋 is 𝑛-

homogeneous at a point 𝑝 ∈  𝑋, then the following 

statements hold. 

 

1. 𝑋 is homogeneous or 𝑋 is 
1

2
-homogeneous and 

its orbits are 𝑋 −  {𝑝} and {𝑝}. 

2. If 𝑛 ≥  2, 𝑋 is (𝑛 − 1) -homogeneous at 𝑝. 

 

Proof 

Suppose that 𝑋 is 𝑛-homogeneous at the point 𝑝 ∈
 𝑋. Let us first show that 𝑋 −  {𝑝} is contained in 

an orbit of 𝑋. Take two points 𝑥 and 𝑦 in 𝑋 −  {𝑝} 

and consider 𝑛 − 2 points 𝑥1, 𝑥2, . . . , 𝑥𝑛−2 in 𝑋 −
 {𝑥, 𝑦, 𝑝}. Since 𝑋 is 𝑛-homogeneous at 𝑝, there 

exists ℎ ∈  ℋ (𝑋) such that:  
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ℎ({𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑛−2 }) =  {𝑦, 𝑥1, 𝑥2, . . . , 𝑥𝑛−2}  

and  ℎ(𝑝)  =  𝑝.  
 

If ℎ (𝑥)  =  𝑦, then 𝑥 and 𝑦 belong to the 

same orbit of 𝑋. Suppose that ℎ (𝑥)  ≠  𝑦. 

Consequently, there exists 𝑖1 ∈  {1,2, . . . , 𝑛 − 2} 

such that ℎ (𝑥)  =  𝑥𝑖1
. If ℎ(𝑥𝑖1

) = 𝑦, then ℎ2 ∈

ℋ(𝑋) and ℎ2 (𝑥)  =  𝑦. We continue in this 

fashion to obtain 𝑚 ∈  {1,2, . . . , 𝑛 −  1} such that 

ℎ𝑚 (𝑥)  =  𝑦, which proves that 𝑥 and 𝑦 belong 

to the same orbit of 𝑋. Therefore, 𝑋 −  {𝑝} is 

contained in an orbit 𝒪 of 𝑋. 

 

If 𝑋 is not homogeneous, 𝑝 does not belong 

to 𝒪, and the two orbits of 𝑋 are 𝑋 −  {𝑝} and {𝑝}. 

This proves 1. 

 

To prove 2 note that the case 𝑛 =  2 is 

trivial. Then, we can assume that 𝑛 ≥  3. From 

Definition 4.1, it follows that 𝑋 −  {𝑝} is (𝑛 − 1)-

homogeneous. Furthermore, by the second part of 

Theorem 4.3, we have 𝑋 −  {𝑝} is also (𝑛 −  2)-

homogeneous. Let 𝐴 and 𝐵 be two subsets of 𝑋, 

each one with exactly 𝑛 −  1 elements, and such 

that 𝑝 ∈  𝐴 ∩ 𝐵. There exists a homeomorphism 

ℎ: 𝑋 −  {𝑝}  →  𝑋 − {𝑝} such that ℎ (𝐴 −
 {𝑝})  =  𝐵 −  {𝑝}. Now, using Theorem 2.2, we 

can extend ℎ to a homeomorphism 𝑔: 𝑋 →  𝑋, 

with 𝑔 (𝑝)  =  𝑝. Consequently, 𝑔 (𝐴)  =  𝐵 and 

𝑔 (𝑝)  =  𝑝. Therefore, 𝑋 is (𝑛 − 1)-

homogeneous at point 𝑝. □ 

 

Definition 4.5 

Let 𝑋 be a continuum and 𝑝 ∈ 𝑋. The composant 

of 𝑝 in 𝑋 is the union of the proper subcontinua of 

𝑋 having 𝑝. We say that 𝑋 is decomposable if 

there are two subcontinua 𝐴 and 𝐵 of 𝑋 such that 

𝑋 =  𝐴 ∪ 𝐵. Finally, we say that 𝑋 is 

indecomposable if 𝑋 is not decomposable. 

 

The first part of the following theorem is 

proved in Theorem 2 (Kuratowski, 1968, p.209). 

The second part can be found in Theorem 11.15 

(Nadler, 1992, p.203) and Theorem 11.17 

(Nadler, 1992, p.204).  

 

Theorem 4.6 

For a continuum 𝑋, the following statements hold. 

 

1. Each composant of 𝑋 is dense in 𝑋. 

2. If 𝑋 is indecomposable, 𝑋 has uncountable 

many composants and each two of them are 

disjoint.  

 

 

 

Theorem 4.7 

Let 𝑋 be a continuum and 𝑚 ≥ 2. If 𝑋 is 𝑚-

homogeneous or 𝑚-homogeneous at some point, 

then 𝑋 is decomposable. 

 

Proof 

Suppose that 𝑋 is indecomposable and 𝑚-

homogeneous at a point 𝑐 ∈ 𝑋. From the second 

part of Theorem 4.4, it follows that 𝑋 is 2-

homogeneous at 𝑐. Let 𝐾𝑐 be the composant of 𝑋 

containing 𝑐. Since composants are dense (Theorem 

4.6), we can take 𝑎 ∈ 𝐾𝑐 −  {𝑐}. If ℎ is a 

homeomorphism from 𝑋 onto itself, which fixes 𝑐, 

then ℎ(𝐾𝑐) = 𝐾𝑐. Hence ℎ({𝑎, 𝑐}) ⊂ 𝐾𝑐. Now, if 

we take 𝑏 in another composant of 𝑋, it is not 

possible to find a homeomorphism that fixes 𝑐 and 

sends 𝑎 onto 𝑏, which contradicts that 𝑋 is 𝑚-

homogeneous at 𝑐.  

 

Now we will assume that 𝑋 is 𝑚-

homogeneous and indecomposable. By the second 

part of Theorem 4.3, 𝑋 is 2-homogeneous. Let 𝐾 be 

a composant of 𝑋, 𝑎, 𝑏 ∈  𝐾 and 𝑐 ∈  𝑋 − 𝐾. Since 

𝑋 is 2-homogeneous, there is a homeomorphism 

ℎ: 𝑋 →  𝑋 such that ℎ ({𝑎, 𝑏})  =  {𝑎, 𝑐}. This 

gives ℎ (𝐾) ∩  𝐾 ≠  ∅, which implies ℎ (𝐾)  =  𝐾 

but, on the other hand, it also indicates that 𝑐 ∈
ℎ (𝐾)  =  𝐾. Since this contradicts the choice of 𝑐, 

we conclude that 𝑋 is decomposable. □ 

 

As we indicated in part 1 of Theorem 4.3, if a 

space is 𝑛-homogeneous, it is homogeneous. 

However, given a homogeneous space 𝑌, there does 

not always exist 𝑛 ∈ ℕ such that 𝑌 is 𝑛-

homogeneous. To see this, by Theorem 4.7, it is 

enough to consider a homogeneous and 

indecomposable continuum, for example, the 

pseudoarc. The following result generalizes Lemma 

4.4 of (Nadler, 2007, p.2158). 

  

Theorem 4.8 

Let 𝑋 be a space and 𝑛 ∈ ℕ. If 𝑋 is n-homogeneous 

at two different points, then 𝑋 is homogeneous. 

 

Proof 

Suppose that 𝑎 and 𝑏 are two points in 𝑋 such that 

𝑋 is 𝑛-homogeneous at each one of them and that 𝑋 

is not homogeneous. Since 𝑋 is 𝑛-homogeneous at  

𝑎, by Theorem 4.4, 𝑋 is 
1

2
-homogeneous and its two 

orbits are 𝑋 −  {𝑎} and {𝑎}. Similarly, since 𝑋 is 

also 𝑛-homogeneous at 𝑏, then 𝑋 − {𝑏} and {𝑏} are 

the two orbits of 𝑋. This is a contradiction, because 

𝑎 ≠  𝑏. Therefore, 𝑋 is homogeneous. 
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Theorem 4.9 

Let 𝑋 be a homogeneous space and 𝑛 ∈ 𝑁. If 𝑋 is 

𝑛-homogeneous at some point, then 𝑋 is 𝑛-

homogeneous. 

 

Proof 

Suppose that 𝑋 is 𝑛-homogeneous at a point 𝑝 ∈
𝑋. Since 𝑋 is homogeneous, by Proposition 4.2, 𝑋 

is 𝑛-homogeneous at each one of its points. Let 

{𝑥1, . . . , 𝑥𝑛} and {𝑦1, … , 𝑦𝑛} be two subsets of 𝑋 

with exactly 𝑛 points and ℎ, 𝑔 ∈ ℋ(𝑋) such that 

 

ℎ({𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛}) = {𝑦1, . . . , 𝑦𝑛−1, 𝑥𝑛},     
ℎ(𝑥𝑛)  =  𝑥𝑛, 

𝑔({𝑦1, 𝑦2, . . . , 𝑦𝑛−1, 𝑥𝑛}) =  {𝑦1, 𝑦2, . . . , 𝑦𝑛}  

and    𝑔(𝑦1) =  𝑦1. 
 

Then, (𝑔 ∘ ℎ)({𝑥1, . . . , 𝑥𝑛}) =
 {𝑦1, 𝑦2, . . . 𝑦𝑛}. Therefore, 𝑋 is 𝑛-homogeneous.  

 

From Theorems 4.8 and 4.9 we obtain the 

following result. 

 

Theorem 4.10 

Let 𝑋 be a space and 𝑛 ∈  ℕ. If there are two 

different points in 𝑋 such that 𝑋 is 𝑛-

homogeneous at each of them, then 𝑋 is 𝑛-

homogeneous. 

 

5.  Relationship with local connectedness 

 

We have proved that 𝑚-homogeneous continua, 

with 𝑚 ≥  2, are decomposable (Theorem 4.7). It 

turns out that, for each 𝑚 ≥  2,  𝑚-homogeneous 

continua are locally connected (Corollary 5.2). 

However, not all 𝑚-homogeneous spaces are 

locally connected. Also, if a continuum is 𝑚-

homogeneous at a point, not always is locally 

connected (Example 5.3). 

 

In (Theorem 3.12, Ungar, 1975) the 

following result is shown. 

 

Theorem 5.1 

If 𝑋 is a 2-homogeneous continuum, 𝑋 is locally 

connected. 

 

Corollary 5.2 

Let 𝑋 be a continuum and 𝑚 ≥ 2. The following 

statements are satisfied. 

 

1. If 𝑋 is 𝑚-homogeneous, 𝑋 is locally 

connected, 

2. If 𝑋 is 𝑚-homogeneous at 𝑝 ∈ 𝑋, then 𝑋 is 

locally connected if and only if 𝑋 is cik at 

some point in 𝑋 −  {𝑝}. 

Proof 

Part 1 is obtained from Theorems 4.3 and 5.1.  For 

the second part, first suppose that 𝑋 is cik at some 

point of 𝑋 −  {𝑝}. Since 𝑋 −  {𝑝} is contained in an 

orbit of 𝑋 (Theorem 4.4), then 𝑋 is cik at each point 

of 𝑋 − {𝑝}. Since the set of points at which 𝑋 is not 

cik is infinite (Corollary 5.13, Nadler, 1992, p.78), 

𝑋 is also cik at 𝑝. Therefore, 𝑋 is cik in each of its 

points and thus, 𝑋 is locally connected. The other 

implication is clear. 

 

Example 5.3 

There are 𝑚-homogeneous spaces, 𝑚-

homogeneous spaces at some point, even 𝑚-

homogeneous continua at some point that are not 

locally connected. 

 

Proof 

It is known that, for each 𝑚 ∈ ℕ, the Cantor set 𝐶 

is 𝑚-homogeneous (it is not difficult to see this if 

we consider that 𝐶 is homeomorphic to {0,1}𝜔) and 

𝐶 is not locally connected. 

 

Put 𝑌 =  {0}  ∪  {1 / 𝑛: 𝑛 ∈  ℕ}. It is easy to 

see that, for each 𝑚 ∈ ℕ, 𝑌 is 𝑚-homogeneous at  0 

and not locally connected at 0.  Now, take the 

circumference 𝑆1 and a fixed point 𝑠 ∈ 𝑆1. Let 𝐶 be 

the usual Cantor set, 𝑋 be the continuum (𝑆1  ×
 𝐶) / ({𝑠}  ×  𝐶) and 𝑞: 𝑆1  ×  𝐶 →  𝑋  be the 

quotient function (See Figure 1). Note that 

𝑞 ({𝑠}  ×  𝐶)  =  𝑝, for some 𝑝 ∈  𝑋, and {𝑝} is an 

orbit of 𝑋. In addition, 𝑋 −  {𝑝} is homogeneous 

and has no points of local connectedness. Let's see 

that  𝑋 is 2-homogeneous at 𝑝. To this end take 

𝑎, 𝑏 ∈ 𝑋 −  {𝑝}. Since 𝑋 −  {𝑝} is homogeneous, 

there exists a homeomorphism 𝑓 of 𝑋 −  {𝑝} onto 

itself such that 𝑓 (𝑎)  =  𝑏. By Theorem 2.2, we can 

extend 𝑓 to a homeomorphism 𝑔 ∈  ℋ (𝑋) such 

that 𝑔 (𝑝)  =  𝑝. Since 𝑎 ∈ 𝑋 −  {𝑝}, we have 

𝑔(𝑎) = 𝑓 (𝑎) = 𝑏. Therefore, 𝑋 is a continuum 

which is 2-homogeneous a 𝑝. It is easy to see that 

𝑋 is not locally connected at any point of 𝑋 −  {𝑝}.  

 

 
 
Figure 1 Continuum X of Example 5.3. Own elaboration 
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6.  n-homogeneity and cut points 

 

In this section we show a relationship between the 

different types of homogeneity we have 

considered, when one of the orbits is degenerate.  

The following proposition generalizes Lemma 4.3 

of (Nadler, 2007, p.2188). 

  

Proposition 6.1 

Let 𝑋 be a continuum with a degenerate orbit {𝑐}. 

The following statements are equivalent. 

 

1. 𝑋 is 
1

2
-homogeneous. 

2. There is 𝑚 ≥ 2 such that 𝑋 is 𝑚-

homogeneous at 𝑐. 

3. 𝑋 is 2-homogeneous at 𝑐. 

 

Proof 

Suppose that 𝑋 is 
1

2
-homogeneous. The two orbits 

of 𝑋 are {𝑐} and  𝑋 −  {𝑐}. Consequently, if 𝑥 and 

𝑦 are two points on 𝑋 −  {𝑐}, there exists ℎ ∈
ℋ(𝑋) such that ℎ (𝑥) =  𝑦 and since 𝑐 is the only 

element of its orbit, ℎ (𝑐)  =  𝑐. Then, 𝑋 is 2-

homogeneous at 𝑐. This proves that 1 implies 3.  

It is clear that 3 implies 2.  

Now suppose that there is 𝑚 ≥ 2 such that 𝑋 is 

𝑚-homogeneous at 𝑐. Since 𝑋 is not 

homogeneous, by part 1 of Theorem 4.4, 𝑋 is 
1

2
-

homogeneous. This completes the proof. □ 

 

Theorem 6.2 

Let 𝑋 be a continuum such that 𝐶𝑢𝑡 (𝑋)  ≠  ∅. 

Then the following statements hold.  

1. If 𝑚 ∈ ℕ, then 𝑋 is not 𝑚-homogeneous; 

2. If 𝑋 is 2-homogeneous at some point 𝑐, then 

𝐶𝑢𝑡 (𝑋)  =  {𝑐}, 

3. If 𝑚 ∈  ℕ −  {1,2}, then 𝑋 is not 𝑚-

homogeneous at any of its points. 

 

Proof 

By Theorem 6.6 (Nadler, 1992, p.89), 𝑋 has at 

least two non-cut points. Since 𝐶𝑢𝑡 (𝑋)  ≠  ∅, 𝑋 

is not homogeneous. From part 1 of Theorem 4.3, 

we obtain 1. To see 2, suppose that 𝑋 is 2-

homogeneous at a point 𝑐. By the first part of 

Theorem 4.4, its two orbits are 𝑋 −  {𝑐} and {𝑐}. 

On the other hand, 𝐶𝑢𝑡 (𝑋) and 𝑋 − 𝐶𝑢𝑡 (𝑋), are 

also the two orbits of 𝑋. Since 𝑋 − 𝐶𝑢𝑡 (𝑋) is not 

degenerate, 𝐶𝑢𝑡 (𝑋)  =  {𝑐}. This proves 2.  

 

 

 

 

 

 

To see 3, suppose that 𝑋 is 𝑚-homogeneous 

at a point 𝑐 ∈ 𝑋, for some 𝑚 ≥ 3. From part 2 of 

Theorem 4.4, 𝑋 is 2-homogeneous at 𝑐 and, by part 

2 of this theorem, 𝐶𝑢𝑡 (𝑋)  =  {𝑐}. Lets take a 

component 𝐶 of 𝑋 −  {𝑐}, and 𝐴 ⊂  𝐶, with exactly 

𝑚 −  1 points. Since 𝑐 is a cut point of 𝑋, then 𝐶 ≠
 𝑋 −  {𝑐}. Being  𝑚 ≥  3, we can take  𝐵 ⊂ 𝑋 −
 {𝑐}, with exactly 𝑚 −  1 elements, such that 𝐵 ∩
𝐶 ≠  ∅ ≠  𝐵 ∩ (𝑋 − 𝐶). As the image of a 

component of 𝑋 −  {𝑐}, under a homeomorphism 

of 𝑋 in 𝑋, is a component of 𝑋 −  {𝑐}, for each ℎ ∈
 ℋ (𝑋), ℎ (𝐴) ≠  𝐵. Therefore, 𝑋 is not 𝑚-

homogeneous at 𝑐. 

 

7.  
𝟏

𝒏
− homogeneity and cut points 

 

Let 𝑋 be a connected space and 𝑐 ∈ 𝑋. Recall that 

by 𝒜𝑐 we mean the family of all the components of 

𝑋 −  {𝑐}. In this section we show some results that 

relate the orbits of a continuum with exactly one cut 

point 𝑐, with the orbits of the components of 𝑋 −
 {𝑐}.  

 

The following theorem shows that if the continuum 

𝑋 is locally connected, then each orbit of 𝑋 

intersects, at most, one orbit of each component 

and, in addition, this orbit can be obtained as the 

union of the orbits of the components which it 

intersects. 

 

Theorem 7.1 

Let 𝑋 be a continuum with a single cut point 𝑐. If 

𝐴 ∈  𝒜c and 𝑎 ∈ 𝐴, the following statements are 

satisfied. 

 

1. OrbX(a) ∩ A ⊂ OrbA(a). 

2. OrbX(a) ⊂∪ {OrbB(b): B ∈ 𝒜c y b ∈
 OrbX(a) ∩ B}. 

 

Moreover, if 𝑋 is locally connected, 

equalities are obtained in 1 and 2. 

 

Proof 

To prove 1, let 𝑦 ∈ 𝑂𝑟𝑏𝑋 (𝑎)  ∩ 𝐴 and ℎ ∈ ℋ  (𝑋) 

such that ℎ (𝑎)  =  𝑦. Since 𝑎 and ℎ (𝑎) are 

elements of 𝐴, by Theorem 2.1, ℎ (𝐴)  =  𝐴. Hence 

ℎ|𝐴: 𝐴 →  𝐴 is a homeomorphism and 𝑦 ∈
 𝑂𝑟𝑏𝐴(𝑎).  

 

To see 2, take 𝑏 ∈ 𝑂𝑟𝑏𝑋 (𝑎). Since 𝑐 is the 

only cut point of 𝑋, 𝑎 and 𝑐 do not belong to the 

same orbit of 𝑋. Hence, 𝑏 ≠  𝑐 and exists 𝐵 ∈ 𝐴𝑐 

such that 𝑏 ∈  𝐵. Therefore, 𝑏 ∈ 𝑂𝑟𝑏𝑋(𝑎) ∩ 𝐵. 

Since 𝑏 ∈ 𝑂𝑟𝑏𝐵 (𝑏), this proves 2.   
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Now suppose that 𝑋 is locally connected 

and let us prove that the equalities are obtained in 

1 and 2. First, take a point 𝑦 ∈ 𝑂𝑟𝑏𝐴 (𝑎). Then 

there is a homeomorphism 𝑓: 𝐴 →  𝐴 such that 

𝑓 (𝑎)  =  𝑦. By  part 1 of Theorem 2.4, we have 

𝐶𝑙𝑋 (𝐴)  =  𝐴 ∪ {𝑐}. Furthermore, by Theorem 

2.2, we can extend 𝑓 to a homeomorphism 𝑔, of 

𝐶𝑙𝑋 (𝐴) onto itself, such that 𝑔 (𝑐)  =  𝑐. Now 

consider the function ℎ: 𝑋 →  𝑋 defined, for each 

𝑥 ∈ 𝑋, as 

 

ℎ(𝑥)  = {
𝑔(𝑥),   𝑖𝑓 𝑥 ∈  𝐶𝑙𝑋(𝐴);

 𝑥,   𝑖𝑓 𝑥 ∈  𝑋 −  𝐴.
 

 

Since 𝑋 is locally connected, 𝑋 − 𝐴 is 

closed in 𝑋. In addition, 

 
𝐶𝑙𝑋(𝐴) ∩ (𝑋 −  𝐴) =  (𝐴 ∪ {𝑐}) ∩  (𝑋 −  𝐴) =
 {𝑐}.   

 
Then, ℎ is continuous, ℎ(𝑐)  =  𝑐 y, since 𝑔 and 

1𝑋−𝐴 are homeomorphisms, ℎ is a 

homeomorphism. As ℎ ∈ ℋ (𝑋) and ℎ (𝑎)  =
 𝑔 (𝑎)  =  𝑓 (𝑎)  =  𝑦, 𝑦 ∈ 𝑂𝑟𝑏𝑋 (𝑎)  ∩ 𝐴. This 

proves that 𝑂𝑟𝑏𝐴 (𝑎)  ⊂ 𝑂𝑟𝑏𝑋 (𝑎)  ∩ 𝐴. 

Consequently  

 

𝑂𝑟𝑏𝐴(𝑎)  =  𝑂𝑟𝑏𝑋(𝑎)  ∩  𝐴 ,                           (7.1)  

 

To see the equality in the second part, take 
𝑦 ∈ ∪ {𝑂𝑟𝑏𝐵(𝑏): 𝐵 ∈ 𝒜𝑐 and  𝑏 ∈  𝑂𝑟𝑏𝑋(𝑎) ∩ 𝐵}. 
Then there are 𝐵 ∈ 𝒜𝑐 and 𝑏 ∈ 𝑂𝑟𝑏𝑋 (𝑎)  ∩ 𝐵 

such that 𝑦 ∈ 𝑂𝑟𝑏𝐵 (𝑏). From (7.1), we have 

𝑂𝑟𝑏𝐵 (𝑏)  =  𝑂𝑟𝑏𝑋 (𝑏)  ∩ 𝐵, which gives 𝑦 ∈
𝑂𝑟𝑏𝑋 (𝑏). Since 𝑏 ∈ 𝑂𝑟𝑏𝑋 (𝑎), we obtain 

𝑂𝑟𝑏𝑋 (𝑎)  =  𝑂𝑟𝑏𝑋 (𝑏). This proves that 𝑦 ∈
𝑂𝑟𝑏𝑋(𝑎). □ 

 

Lemma 7.2 

Let 𝑋 be a locally connected continuum with 

exactly one cut point 𝑐. If every two elements of 

𝒜𝑐 are homeomorphic, for each 𝑥 ∈ 𝑋 −  {𝑐} and 

each 𝐵 ∈ 𝒜𝑐, we have  𝑂𝑟𝑏𝑋(𝑥) ∩ 𝐵 ≠  ∅. 

 

Proof 

Suppose that all the elements of 𝒜𝑐 are 

homeomorphic to each other, so they have the 

same degree of homogeneity. Fix 𝐴 ∈  𝒜𝑐 and let 

𝐵 ∈ 𝒜𝑐 and 𝑎 ∈ 𝐴. As we proved in Theorem 3.4, 

there is  ℎ𝐵 ∈  ℋ(𝑋) such that ℎ𝐵(𝑐)  =  𝑐, 

ℎ𝐵(𝐴) = 𝐵 and ℎ𝐵(𝑂𝑟𝑏𝐴(𝑎)) = 𝑂𝑟𝑏𝐵(ℎ𝐵(𝑎)).  

 

If 𝐵 =  𝐴, ℎ𝐵 is the identity map and, from 

part 1 of Theorem 7.1, 

 

𝑂𝑟𝑏𝑋(𝑎)  ∩  𝐴 =  𝑂𝑟𝑏𝐴(𝑎).                               (7.2) 

Suppose then that 𝐵 ≠  𝐴. Let's prove that 

 

𝑂𝑟𝑏𝑋(𝑎)  ∩  𝐵 =  𝑂𝑟𝑏𝐵(ℎ𝐵(𝑎)).                       (7.3) 

 

Let 𝑥 ∈ 𝑂𝑟𝑏𝑋(𝑎) ∩ 𝐵 and 𝑔 ∈ 𝐻 (𝑋) such 

that 𝑔 (𝑥)  =  𝑎. Then ℎ𝐵 ∘ 𝑔: 𝑋 →  𝑋 is a 

homeomorphism such that (ℎ𝐵 ∘ 𝑔)(𝑥) =  ℎ𝐵(𝑎). 

Thus, 𝑥 ∈ 𝑂𝑟𝑏𝑋(ℎ𝐵(𝑎)) and, from 1 of Theorem 

7.1, we obtain 𝑥 ∈ 𝑂𝑟𝑏𝐵(ℎ𝐵(𝑎)). This proves that 

𝑂𝑟𝑏𝑋(𝑎) ∩ 𝐵 ⊂ 𝑂𝑟𝑏𝐵 (ℎ𝐵(𝑎)). Now  take 𝑥 ∈

 𝑂𝑟𝑏𝐵(ℎ𝐵(𝑎)). Note that 𝑥 ∈  𝐵 and, again by 1 of 

Theorem 7.1, 𝑥 ∈ 𝑂𝑟𝑏𝑋(ℎ𝐵(𝑎)). Let 𝑔 ∈  ℋ (𝑋) 

such that 𝑔 (𝑥)  = ℎ𝐵(𝑎), then ℎ𝐵
−1 ∘ 𝑔 ∈

ℋ (𝑋) and 

 

(ℎ𝐵
−1∘ 𝑔)(𝑥) =  ℎ𝐵

−1 (𝑔(𝑥)) =  ℎ𝐵
−1 (ℎ𝐵(𝑎)) = 𝑎   

 

Therefore, 𝑥 ∈ 𝑂𝑟𝑏𝑋(𝑎) ∩ 𝐵. This proves 

that 𝑂𝑟𝑏𝐵(ℎ𝐵(𝑎)) ⊂ 𝑂𝑟𝑏𝑋(𝑎) ∩ 𝐵. From which 

we obtain (7.3). By (7.2) and (7.3) it follows that 

the orbit of 𝑎 in 𝐴 intersects each element of 𝒜𝑐. 

To finish the proof,  take 𝑥 ∈ 𝑋 −  {𝑐} and 𝐵 ∈ 𝒜𝑐. 

Suppose without loss of generality that 𝑥 ∈  𝐴. 

Applying (7.2) and (7.3) to 𝑎 =  𝑥, we have 

𝑂𝑟𝑏𝑋(𝑥) ∩ 𝐵 =  𝑂𝑟𝑏𝐵(ℎ𝐵(𝑥)) ≠  ∅.□ 

 

Lemma 7.3 

Let 𝑋 be a 
1

𝑛
-homogeneous continuum such that 

𝐶𝑢𝑡 (𝑋)  =  {𝑐}, 𝐴 ∈ 𝒜𝑐 and 𝑛𝐴 be the number of 

orbits of 𝑋 that intersect 𝐴. Then 𝑛𝐴  < 𝑛, the 

homogeneity degree of 𝐴 is less than or equal to 𝑛𝐴, 

and it is equal when 𝑋 is locally connected. 

 

Proof 

Let 𝜒𝐴 be the family of the orbits of 𝑋 that intersect 

𝐴. Since {𝑐} ∉ 𝜒𝐴 then 𝑛𝐴 < 𝑛.  From part 1 of 

Theorem 7.1, each element of 𝜒𝐴 is contained in an 

orbit of 𝐴, which implies the homogeneity degree 

of  𝐴 is at most |𝜒𝐴 | =  𝑛𝐴.   
 

Now if 𝑋 is locally connected, by Theorem 

7.1, each element of 𝜒𝐴 is an orbit of 𝐴, which 

implies that the homogeneity degree of 𝐴 is  𝑛𝐴.  □ 

 
Theorem 7.4 

Let 𝑋, 𝑐 and 𝒜𝑐 as in Lemma 7.2 and 𝑛 ≥ 1. Then 

𝑋 is 
1

𝑛 + 1
-homogeneous if and only if each 𝐵 ∈ 𝒜𝑐 

is 
1

𝑛
-homogeneous. 
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Proof 

First suppose that each 𝐵 ∈  𝒜𝑐 is 
1

𝑛
-

homogeneous and their orbits are 

𝑂𝑟𝑏𝐵(𝑎1𝐵
), 𝑂𝑟𝑏𝐵(𝑎2𝐵

), … , 𝑂𝑟𝑏𝐵(𝑎𝑛𝐵
). Fix 𝐴 ∈

 𝒜𝑐. For each 𝐵, let ℎ𝐵 ∈ 𝐻 (𝑋) such that 

ℎ𝐵(𝑐) =  𝑐, ℎ𝐵(𝐴) =  𝐵 and the image of an 

orbit 𝑂𝑟𝑏𝐴(𝑎) under ℎ𝐵 is 𝑂𝑟𝑏𝐵(ℎ𝐵(𝑎)) 

(Theorem 3.4). Rearranging the indices, if 

necessary, we can assume that for each 𝑖 ∈
 {1, 2, . . . , 𝑛}, 

 

ℎ𝐵 (𝑂𝑟𝑏𝐴(𝑎𝑖𝐴
)) = 𝑂𝑟𝑏𝐵(𝑎𝑖𝐵

)  and 

ℎ𝐵(𝑎𝑖𝐴
) = 𝑎𝑖𝐵

 .   

 

For each 𝑖 ∈ {1, 2, . . . , 𝑛} and each 𝑏 ∈
 𝑂𝑟𝑏𝐵(𝑎𝑖𝐵

), we have 𝑂𝑟𝑏𝐵(𝑏) =  𝑂𝑟𝑏𝐵(𝑎𝑖𝐵
). 

Since 𝑋 is locally connected, applying (7.2), (7.3) 

and the equality in part 2 of Theorem 7.1, it is true 

that: 

 

𝑂𝑟𝑏𝑋(𝑎𝑖𝐴
) =  

∪ {𝑂𝑟𝑏𝐵(𝑏): 𝐵 ∈  𝒜𝑐  𝑦 𝑏 ∈ 𝑂𝑟𝑏𝑋(𝑎𝑖𝐴
) ∩ 𝐵} 

= ∪  {𝑂𝑟𝑏𝐵(𝑏) ∶  𝐵 ∈ 𝒜𝑐  𝑦 𝑏 ∈ 𝑂𝑟𝑏𝐵(𝑎𝑖𝐵
)} 

=∪𝐵∈𝒜𝑐
 𝑂𝑟𝑏𝐵(𝑎𝑖𝐵

). 

 

It follows that, for 𝑖 ≠  𝑗, the orbits in 𝑋 

of 𝑎𝑖𝐵 and 𝑎𝑗𝐴 are different and 

 

𝑋 − {𝑐} = ⋃ (⋃ 𝑂𝑟𝑏𝑋(𝑎𝑖𝐴
)

𝑛

𝑖=1

)

𝐵∈𝒜𝑐

 

= ⋃ 𝑂𝑟𝑏𝑋(𝑎𝑖𝐴
)

𝑛

𝑖=1

. 

 

Then 𝑋 − {𝑐} is the union of exactly 𝑛 

orbits of 𝑋. Since {𝑐} is an orbit of 𝑋, 𝑋 is 
1

𝑛 + 1
-

homogeneous. 

 

Now suppose that, for some 𝑛 ∈ ℕ − {1}, 

𝑋 is 
1

𝑛 + 1
-homogeneous. Let 𝐵 ∈ 𝒜𝑐. Since the 

elements of 𝒜𝑐 are homeomorphic, the only orbit 

of 𝑋 that does not intersect 𝐵 is {𝑐}. By Lemma 

7.3, the homogeneity degree of 𝐵 is 𝑛. □ 

 

Corollary 7.5 

Let 𝑋 be a continuum with exactly one cut point 

𝑐. If 𝑋 is 
1

3
-homogeneous, then each 𝐴 ∈ 𝒜𝑐 is 

homogeneous or each 𝐴 ∈ 𝒜𝑐 is 
1

2
-homogeneous. 

 

 

 

Proof 

Since 𝑋 is 
1

3
-homogeneous, by Lemma 7.3, the 

elements of 𝒜𝑐 have at most two orbits. Suppose 

𝐵 ∈ 𝒜𝑐 is 
1

2
-homogeneous. Then, there exist 

𝑏1, 𝑏2 ∈ 𝐵 such that 𝑂𝑟𝑏𝐵(𝑏1) and 𝑂𝑟𝑏𝐵(𝑏2) are 

the two orbits of 𝐵. From part 1 of Theorem 7.1 

 

𝑂𝑟𝑏𝑋(𝑏1) ∩  𝐵 ⊂  𝑂𝑟𝑏𝐵(𝑏1)  and  

𝑂𝑟𝑏𝑋(𝑏2) ∩  𝐵 ⊂  𝑂𝑟𝑏𝐵(𝑏2). 
 

Hence, 𝑂𝑟𝑏𝑋(𝑏1), 𝑂𝑟𝑏𝑋(𝑏2) and {𝑐} are the 

three orbits of 𝑋. Now let 𝐵 ∈ 𝒜𝑐 and 𝑎 ∈ 𝐴. 

Suppose without loss of generality that 𝑎 ∈
𝑂𝑟𝑏𝑋(𝑏1). Then, there exists ℎ ∈ ℋ(𝑋) such that 

ℎ (𝑎)  = 𝑏1. By Theorem 2.1, it follows that 

ℎ (𝐴)  =  𝐵. Then 𝐴 and 𝐵 are homeomorphic and 

𝐴 is also 
1

2
-homogeneous.  

 

Figure 2 shows three examples of 
1

3
-

homogeneous continua with exactly one cut point. 

The first one is obtained by attaching, at a point, a 

sphere with a circumference. The second one is the 

union of a sequence of disks converging to a point 

𝑎, and such that every two of them intersect at the 

cut point 𝑎. Finally, the third continuum can be seen 

as (𝐶 ×  𝐷) / (𝐶 ×  {1}), where 𝐶 is the Cantor set 

and 𝐷 is the unit disk. Note that the last example is 

not locally connected, but in each case, the closure 

of the components of the complement of the cut 

point is a locally connected subcontinuum.  

 

 
 

 

Figure 2 Examples of 
1

3
-homogeneous continua. Own 

elaboration 

 

Next, we build a well known continuum, 

which we will use in the following results of this 

section. Consider the cube 𝐼3 =  [0,1]3. We divide 

each face of the cube into nine equal squares, this 

generates a subdivision of the cube into 27 equal 

cubes. Make a hole through the inside of each 

central square, this gives us a continuum 𝑀1 formed 

by 20 of the 27 small cubes. Now apply this process 

to each one of the twenty remaining cubes; that is, 

we divide each face of each cube in 9 equal squares 

and we make a hole through the interior of the 

central squares, in this way we obtain a continuum 

𝑀2 ⊂ 𝑀1. We repeat this process to obtain a nested 

sequence of continua {𝑀𝑛}𝑛. Set 
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𝑀 = ⋂ 𝑀𝑛.

𝑛∈ℕ

 

 

𝑀 is a continuum called the Menger 

Universal Curve (Figure 3) and its name is due to 

the fact that it was first described by K. Menger 

in 1926 as a 1-dimensional continuum which 

contains a copy of any separable metric space of 

dimension 1 (Theorem 6.1, Mayer, Oversteegen 

and Tymchatyn, 1986, p.42). In Theorems II and 

III (Anderson, 1958, pp. 320-322), it is proved 

that 𝑀 is 2-homogeneous at any of its points. 

From this and Theorem 4.10, it follows that 𝑀 is 

2-homogeneous, and by the second part of 

Theorem 4.3,   𝑀 is homogeneous. 

 

In the remainder of this section, the letter 𝑀 

will denote the Menger Universal Curve.  

 

 
 
Figure 3 Construction of the Menger Universal Curve 

Source:https://matemelga.wordpress.com/2015/01/09/la-

esponja-de-menger/. 

 

The proof of the following theorem can be 

found in Corollary 4 of (Kennedy, 1984, p.97). 

 

Theorem 7.6 

If 𝑋 is any continuum, then 𝑀 ×  𝑋 is not 2-

homogeneous 

 

Given two continuous functions 𝑓 ∶  𝑋1 →
𝑌1 and 𝑔: 𝑋2 → 𝑌2, we define the product function 

𝑓 × 𝑔: 𝑋1 × 𝑋2 → 𝑌1 × 𝑌2, for each (𝑥1, 𝑥2) ∈
𝑋1 × 𝑋2, by: 

 

(𝑓 × 𝑔)((𝑥1, 𝑥2)) = (𝑓(𝑥1), 𝑔(𝑥2))  

 

Theorem 7.7 

Let 𝑋 be a continuum and 𝑐 ∈ 𝑀 ×  𝑋, then 

(𝑀 ×  𝑋) − {𝑐} is not homogeneous 

 

 

 

 

Proof 

Suppose that 𝑌 =  𝑀 ×  𝑋 − {𝑐} is homogeneous. 

Take 𝑢, 𝑣 ∈ 𝑌, then there is a homeomorphism 𝑓 ∶
𝑌 →  𝑌 such that 𝑓(𝑢) = 𝑣.  

 

By Theorem 2.2, there is a homeomorphism 

𝑔: 𝑀 ×  𝑋 →  𝑀 ×  𝑋 extending 𝑓 such that 

𝑔 (𝑐)  =  𝑐. Thus, 𝑔 (𝑢)  =  𝑣 and 𝑔 (𝑐)  =  𝑐. 

Then, 𝑀 ×  𝑋 is 2-homogeneous at 𝑐. Now, from 

part 1 of Theorem 4.4, 𝑀 ×  𝑋 is homogeneous or 

𝑀 ×  𝑋 is 
1

2
-homogeneous. If 𝑀 ×  𝑋 was 

homogeneous, Theorem 4.9 would tell us that 

𝑀 ×  𝑋 is 2-homogeneous. Since this contradicts 

Theorem 7.6,  𝑀 ×  𝑋 is 
1

2
-homogeneous. From 

Theorem 4.4, their orbits are: 

 

{c} and (M ×  X)  −  {c}. 

 

Let 𝑐 =  (𝑎, 𝑥) and take 𝑏 ∈  𝑀 −  {𝑎}. 

Note that (𝑏, 𝑥) and 𝑐 belong to different orbits of 

𝑀 ×  𝑋. On the other hand,  𝑀 is homogeneous, so 

there is a homeomorphism 𝑘: 𝑀 →  𝑀 such that 

𝑘 (𝑎)  =  𝑏. Then ℎ =  𝑘 ×  1𝑋: 𝑀 ×  𝑋 → 𝑀 ×
 𝑋 is a homeomorphism such that ℎ(𝑐)  = (𝑏, 𝑥). 

From this contradiction we conclude that (𝑀 ×
 𝑋)  −  {𝑐} is not homogeneous. □ 

 

In the following results, for a space 𝑍, we will 

denote by 𝑍2 the space 𝑍 ×  𝑍. 

 

Theorem 7.8 

Let 𝑚 >  1 and 𝑋 be a continuum 𝑚-homogeneous 

at the point 𝑎 ∈  𝑋. Then 𝑌 =  𝑋2– {(𝑎, 𝑎)} has at 

most two orbits. 

 

Proof 

Let us first show that (𝑋 −  {𝑎})2 is contained in an 

orbit of 𝑌. Take (𝑥, 𝑦) and (𝑢, 𝑣) in (𝑋 – {𝑎})2. 

Since 𝑋 is 𝑚-homogeneous at 𝑎, by part 2 of 

Theorem 4.4, 𝑋 is 2-homogeneous at 𝑎. Hence, 

there exist homeomorphisms 𝑓, 𝑔: 𝑋 →  𝑋 such 

that 𝑓(𝑥) =  𝑢, 𝑔 (𝑦) =  𝑣 and 𝑓(𝑎) = 𝑎 = 𝑔(𝑎). 

Note that 𝑓 × 𝑔: 𝑋2 →  𝑋2 is a homeomorphism 

such that:  

 

(𝑓 ×  𝑔)((𝑥, 𝑦)) = (𝑓(𝑥), 𝑔(𝑦)) =  (𝑢, 𝑣)  and 

(𝑓 ×  𝑔)((𝑎, 𝑎))  =  (𝑎, 𝑎)  

 

This shows that (𝑋 – {𝑎})2 is conained in an 

orbit of 𝑌. 
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We want to see that [({𝑎}  ×  𝑋) ∪ (𝑋 ×
 {𝑎})] − {(𝑎, 𝑎)} is contained in an orbit of 𝑌. To 

this end it suffices to prove that if 𝑥, 𝑦 ∈  𝑋 −
 {𝑎}, then (𝑎, 𝑦), (𝑎, 𝑥), (𝑦, 𝑎) y (𝑥, 𝑎) belong to 

the same orbit of 𝑌. Since 𝑋 is 2-homogeneous at 

𝑎, there is 𝑓 ∈ ℋ(𝑋) such that 𝑓(𝑥) = 𝑦 and 

𝑓(𝑎) = 𝑎. Set ℎ1 = (1𝑋 × 𝑓)|𝑌 , ℎ2  =  (𝑓 ×
 1𝑋)|𝑌  and ℎ3 defined, for each (𝑢, 𝑣) ∈  𝑌, by 

ℎ3(𝑢,𝑣) = (𝑓(𝑣), 𝑢). Then, ℎ1, ℎ2, ℎ3: 𝑌 →  𝑌 are 

homeomor-phisms such that:  

 

ℎ1(𝑎, 𝑥) =  (𝑎, 𝑦), ℎ2(𝑥, 𝑎) =  (𝑦, 𝑎) and 

ℎ3(𝑎, 𝑥)  =  (𝑦, 𝑎)  

 

This proves that the four points are elements 

of the same orbit of 𝑌. Since 𝑌 is the union of the 

sets (𝑋 −  {𝑎})2 and [({𝑎} × 𝑋) ∪ (𝑋 × {𝑎})] −
{(𝑎, 𝑎)}, the theorem holds. □ 

 

Corollary 7.9 

 If 𝑐 ∈  𝑀 × 𝑀, then (𝑀 × 𝑀) − {𝑐} is 
1

2
- 

homogeneous 

 

Proof 

Let 𝑎 ∈ 𝑀. As we mentioned before, Theorems II 

and III (Anderson, 1958, pp. 320-322), 𝑀 is 2-

homogeneous at any of its points. Now, by 

Theorems 7.7 and 7.8,  (𝑀 × 𝑀) − {(𝑎, 𝑎)} is 
1

2
-

homogeneous. Since 𝑀 ×  𝑀 is homogeneous, 

there is a homeomorphism ℎ: 𝑀 × 𝑀 →  𝑀 × 𝑀 

such that ℎ(𝑐)  =  (𝑎, 𝑎). Then, (𝑀 × 𝑀) − {𝑐}  

is homeomorphic to (𝑀 ×  𝑀)  −  {(𝑎, 𝑎)} and, 

therefore, is 
1

2
-homogeneous.   □ 

 

From Theorem 7.4 and Corollary 7.9 we 

obtain the following result. 

 

Corollary 7.10 

Let 𝑐 ∈  𝑀 ×  𝑀, and 𝑋 be the space obtained by 

pasting two copies of 𝑀 ×  𝑀 at the point 𝑐. Then 

𝑋 is 
1

3
-homogeneous, each two elements of 𝒜𝑐 are 

homeomorphic, 
1

2
-homogeneous and the closure 

of each one of them is homogeneous. 
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