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Asymptotically efficient estimation of a static cointegrating regression represents a critical requirement
for later development of valid inferential procedures. Existing methods, such as fully-modified ordinary
least-squares (FM-OLS), canonical cointegrating regression (CCR), or dynamic OLS (DOLS), that are
asymptotically equivalent, require the choice of several tuning parameters to perform parametric or
nonparametric correction of the two sources of bias that contaminate the limiting distribution of the OLS
estimates and residuals. The so-called Integrated Modified OLS (IM-OLS) estimation method, recently
proposed by Vogelsang and Wagner (2011), avoids these inconveniencies through a simple
transformation (integration) of the system variables in the cointegrating regression equation, so that it
represents a very appealing alternative estimation procedure that produces asymptotically almost
efficient estimates of the model parameter. In this paper we study the performance of this estimator, both
asymptotically and in finite samples, in the case of near cointegration when mechanism generating the
error term of the cointegrating regression equation represents a certain generalization of the 1(0)
assumption in the standard case. Particularly, we consider three different specifications for the error term
that generate a stationary sequence with finite variance in large samples, but are nonstationary for small
sample sizes, and a fourth specification known as a stochastically trendless process that represents an
intermediate situation between ordinary stationarity and nonstationarity and that determines what has
been termed as stochastic cointegration. With this, we characterize the limiting distribution of the IM-
OLS estimator, determining the main differences with respect the reference case of stationary
cointegration, and evaluate its performance in finite samples as measured by bias and root mean squared
error through a small simulation experiment.
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Introduction

Since the seminal work of Engle and Granger
(1987), theoretical and empirical analysis of
cointegrating regressions have become a
commonly used tool for analyzing integrated
variables. The structure of the integrated
variables, and in particular that of the regressors,
plays an important role in determining the
distributional properties of the estimators in
these regression equations. It is also relevant to
consider the role of the stochastic properties of
the error term in the cointegrating regression
model, particularly when we consider that can
follows a highly persistent but stationary
process. In any of these situations, the usefulness
and optimality properties of some existing
estimation methods could be questioned.
Another characteristic of the regressors, many
times not considered, is when they contain some
deterministic component and it is not explicitly
taken into account in specifying the
cointegrating  regression model and in
determining the limiting distribution of these
estimators, as has been indicated by Hansen
(1992a).

Given that the use of the basic OLS
estimator presents serious problems in many of
the most important practical situations,
particularly under endogeneity of the regressors
and serially correlated error terms, there has
been proposed a number of alternative
estimation procedures whose main disadvantage
is the need to make some choices on tuning
parameters that are fundamental to their
implementation. Recently, Vogelsang and
Wagner (2011) have proposed a very simple
alternative procedure, the integrated-modified
OLS (IM-OLYS) estimator, that seems to work as
well as the other procedures when consider a
standard framework of analysis.

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
ECORFAN® Al rights reserved.

December 2013 Vol.4 No.11 887-908

In this paper we are interested in
exploring the performance of this new estimator
under a no standard framework when the error
term of the cointegrating regression model is
perturbed in several ways.

In this paper we derive the limiting
distribution of the OLS and IM-OLS estimators
under this no standard situations, and also
perform a simulation experiment to evaluate
their behavior in small samples, with particular
attention to the small sample bias induced by the
parameters characterizing the behavior of the
error term.

The model, assumptions and preliminary
results

We assume that the observed time series Y, and
X, with X, . a k-dimensional vector with k >

1, are generate according to the following
unobserved components model

an,, O

1
11k,t6 ( )

éxk t =3 édk ta

Where (d,,,dg. )¢, with
di.= ;... d. )¢ is  the
component of each series, and (n,,,mg,)¢ is the

zero mean stochastic trend component. It is
assumed that (n,,,ng,)¢ is generated by the
potentially cointegrated triangular system

t = Bgér‘k,t + ut (2)

deterministic

ANi,: = e (3)

By combining (1) and (2) we get the
following relation
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V= (do,- B, )+ BEX, + 1, (@) Where x,,, = n ¥, with W, a

With ¢, = (1,- B¢ the unknown

cointegrating vector. Next, in order to complete
the specification of the cointegrating regression
equation (4) we introduce a very general
assumption on the structure of the nonstochastic

time trends (d,,,dg,)¢.

Assumption 2.1. Deterministic trend
components

Weassumethat d,, = ag, 1, ., With a; ,
a (p,+1)" 1 vector of trend coefficients, with
T, .= (Lt,.,t")¢, pi=0,foreachi=0, 1, ...,k
By defining p = max(po, p1, ..., Px), then we can
write d,, = agz,,, With o, , = (ag, :0¢ , )¢, and
T, = (t¢,:1¢, )¢ SO that d,.= A, 1,
where A, = (e, ..., )¢

Under this assumption 2.1, we get the
following standard specification of the
cointegrating regression model

Yt = ang,t + BPXk,t +u, (5)

Where a,=a,,- AgB,. With this
choice for the order of the polynomial trend
function, we ensure that the OLS estimator of 3,

and the OLS residuals are free of the trend
parameters A, . Taking into account that the

vector of trending regressors in (5),
m, = (t¢,, Xg,), can be decomposed as

m. = pn Ton g_ p.n pt1k (_:)&Cp’m%: wW.m
t + = A T 1 \/_| %‘1 = n ' tn
k p P, n p.tn nk @ k,p* p,n n kk ktn D

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
ECORFAN® Al rights reserved.

(pt1+k)x(p+1+k) nonstochastic and non-

singular weighting matrix, where
p[nr]n Fp nTp [nr] ® Tp(r): (1;rr---;rp)¢, and
T, ,=diag(l,n*,..,n""), then

m, , = (t¢,,, Mg, )¢ is stochastically bounded for
t = [nr] as  n—oo, such  as
my,.., P m(r)= (tg(r),Bgr))¢, with m(r) a full-
ranked  process in  the sense that
ogm(r)mdr)dr> 0 as. Thus, given the OLS
estimator of the parameter vectors in (2.5),
(dgn,ﬁgn)si, the scaled and normalized OLS

estimation error, = (©¢,,Of,)¢, can be

represented as
aﬁ‘p,n- Q v

6,= nw BT, 516, - o)+ AL B, B
Bk,n- B

E ' Bkn By o
& T (1-v) @ 3
g(l/n)a mtnm n= n a mtnut

t=1 g =1 (7)

5
=
@

Where the exponent v will take different
values depending on the stochastic properties of

the cointegrating error term, u, , as will be stated

later. Besides the assumptions concerning the
deterministic trend components of the observed
time series, in order to complete the usual
specification of the cointegrating regression and
to obtain the limiting results characterizing the
OLS estimators and residuals in the standard
cases analyzed in the literature, we introduce the
following assumption concerning the behavior
of the error components u, and €,, in (2) and
(3). In this case, we assume that the cointegrating
error sequence u, is driven by a particular

function of an underlying error sequence v, that
we describe as follows.
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Assumption 2.2. Error components. It is
assumed that &, = (u,,ef,)¢ is a zero mean
covariance stationary process that satisfy
sufficient regularity conditions to verify the
following multivariate invariance principle such
that

o 05w
Bn<r)—§B:':((:))§— M3 Gb B,,()= (8,9

®)

Where B,,,(r)= BM,,,(Q) is a k+1-
dimensional Brownian process with covariance
matrix Q such that, B,,,(r)= Q"*W,,,(r), and
W, ,(r= W, (r),W,(r)d, with W (r) and
W, (r) two standard independent Wiener
processes, and Q a positive definite covariance

matrix.?> The covariance matrix Q is given by
the long-run covariance matrix of the sequence

Ge.

B’ o o o
Q=% %% im  rig 4 ECLd= A+ AG
ku gzkk‘Zj t=1 s=1

Where A is the one-sided long-run
covariance matrix defined as

A=Z+ A=limg, n 15 ﬁ E[C.CA= gA
t=1 s=1
With
g

» E[C Cﬁ éo-k z:kk

The short-run covariance matrix, and

nort @\, A
— -10 o uk—
A_ Ilmn®¥ n a a E[Csc.?g gAku A =

t=2 s=1 ik D

@IIIO

Making use of the upper triangular
Cholesky decomposition of Q we have that
B,(r)= B, (r)+ ®g,'B,(r), with

% This assumption is imposed, rather than derive from
more primitive assumption, since it is a standard result that
holds under general conditions, such as a linear process
ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
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Bu.k(r): wu.kVVu.k(r)’ and wﬁ.k: wﬁ' mnglmku
the conditional long-run variance of B ,(r),

= E[B, (r)’1= E[B, (r)B,(r)], Where B, (r)
and B,(r) are independent, that is,
E[B,(r)B,, (r)]=0

The assumption that Q is positive
definite is a standard, but important, regularity
condition which implies that n,, (and hence

X,:) is a non-cointegrated integrated process
(no  subcointegration) and rules  out
multicointegration under a stable long-run
relation between Y, and X,,. For the initial

values v, and m,,, we assume the sufficiently
general conditions u,=0,(1), and M, ,=o0,(n""?)

, Which include the particular case of constant
finite values.

Among all the elements described above,
the off-diagonal kx1 vector A,, in the one-sided
long-run covariance matrix is of particular
relevance in determining de limiting behavior of
the OLS estimator in (7) under standard
stationary cointegration, that is, when the long-
run equilibrium error is stable. In this case, when
u,= v, or, more generally, when u, is any
stationary transformation of uv,, such as
u, = ¢u, , + v, with |¢| < 1 and fixed, it is well
known that the key component determining the
limiting distribution of the OLS estimator of the
cointegrating vector 3, is given, from (7) with v
=1/2, by

n 12 o (n Y an,t)ut D Gku + Aku' (9)

t= 1

driven by an iid or martingale difference sequence as in
Phillips and Solo (1992).

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
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With B,(r)= (1- &) *B,(r),

Gy, = §, BilsIdB, ()= (1 &) ' B, ()8, (1) + of OB, (1)

And

t=1 t=1 j=1

Ay, = (/)3 EM, b= E;(m,o/ﬁ)(l/ﬁ)én u,§+ Wnd & Ele,y,]

1

= 51 %(1/n) a Ele,. ,-“J%* Elo,(1)B,,(1®° A, = o, + A,,

t=j+1

Where
A,=1- ¢y (A, + 8 dElg, . ]), and
A, =o6,+ A, . Inthis case, the OLS estimator

is consistent at the rate n (superconsistent), but
under endogeneity of the regressors the vector

A,, introduces an asymptotic bias and the

limiting distribution is not a zero mean Gaussian
mixture.”® For the trend parameters a,

appearing in the cointegrating regression model
(5), this framework does not allow their
consistent estimation in the presence of
deterministically trending integrated regressors
(see, e.g., Hansen (1992a). As it follows from
(7), and under standard cointegration, the
composite trend parameters o, + Ag B, can be

0

estimated consistently at the usual rate n*/?, but
the limiting distribution of the OLS estimator

~

a,,+ AgB,, also depends on the nuisance

parameters measuring the degree of endogeneity
of the regressors.

%6 Given that the first term in (2.9) can be decomposed as
J2B.(s)dB, (5) = (L~ ) [; B, (5)dB, , (5)

+(1-0) " [t B, (s)dB, () Q'®,,, then under strict
exogeneity of the regressors, ,,6 =0,, this stochastic
integral behaves as a Gaussian mixture random process,
where the remaining nuisance parameters can be removed
by simple scaling.

27 From equation (2.1) and Assumption 2.1, we have that
the observation t for the set of k deterministically trending
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Despite this last result, the OLS residuals
are exactly invariant to the trend parameters, and
allows for consistent estimation of the
equilibrium error sequence under standard
stationary cointegration.?’

However, the limiting distribution of
some commonly used residual-based statistics
and functionals is plagued of these nuisance
parameters, invalidating the inferential
procedures based on standard normal asymptotic
theory. On the other hand, under non-stationarity
of the long-run relationship among Y, and X,,

(no cointegration), the limiting results are quite
different. Particularly, when the equilibrium

error sequence u, = n,,- Pgn,, contains a unit
root, that is u, = u,_, + v, with n" ’u,,, b B,(r)
, then we get the following limiting result

n 28 (n 0, Ju, P 03B, (s)B,(s)ds when

taking v = -1/2 in (7), determining the
inconsistent estimation of the cointegrating
vector B,, while that the OLS estimator of

a, + A¢ B, diverge at the rate n'/?.

Once established these theoretical results,
there remains to consider the fundamental question
of consistently discriminate in practice between
these two situations making use of some of the
existing testing procedures for the null of no
cointegration against cointegration (see, e.g.,
Phillips and Ouliaris (1990) and Stock (1999) for a
review).

integrated  regressors can be decomposed as
X = Ak_pl";n‘vp,m + M, Which gives that the sequence of
OLS residuals from (2.5) can be written as

N _ = -1 (2 A ~(1/2+v), 11247 1

Ut‘p(k) - Ut -N vtrpm (nvrp‘n[(a‘p,n _q‘p) +Al'<‘p(ﬁk,n _ﬁk)]) -N " nL,t[n +V(ﬁk,n _ﬁk)]
Making use of (2.7) or, alternatively given that (2.5) may be
rewritten as Y’\t,p =[3L5<n,p +U, ,, with YAtyp, )A(ktvp =My, and
U p the OLS detrended error terms ut, then we have that
~ —(1/2 1/2 A

ut,p(k) = ut,p -n +V)1‘If«,p[n +V(Bk,n _Bk )] .

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
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Alternatively we could test the opposite
hypotheses, with cointegration as the null, by
making use of the procedures proposed, among
others, by Shin (1994), Choi and Ahn (1995),
McCabe, Leybourne and Shin (MLS) (1997),
Xiao (1999), Xiao and Phillips (2002) or Wu and
Xiao (2008).

This is not the topic analyzed in this
paper, but it must be stated that all these last
testing procedures are based on asymptotically
efficient estimates of the model parameters in
the sense that this estimators asymptotically
eliminate both the endogeneous bias and the
non-centrality parameter appearing in (9). These
estimation methods are based on several
modifications to OLS and include the fully
modified OLS (FM-OLS) approach of Phillips
and Hansen (1990) and Kitamura and Phillips
(1997), and the canonical cointegrating
regression (CCR) method of Park (1992), which
are based on two different nonparametric
corrections. Also, it must be mentioned the
dynamic OLS (DOLS) approach of Phillips and
Loretan (1991), Saikkonen (1991) and Stock and
Watson (1993) which is based on a parametric
correction consisting on augmenting the
specification of the cointegrating regression (5)
with leads and lags of the first difference of the
regressors.?8 A major drawback of any of these
procedures is the choice of several tuning
parameters, such as a kernel function and a
bandwidth for long run variance estimation for
FM-OLS or CCR estimation, and the number of
leads and lags for the DOLS procedure.

28 pesaran and Shin (1997) examines a further
modification of the two-sided underlying distributed lag
model in the DOLS approach, incorporating a number of
lags of the dependent variable and eliminating the terms
based on leads of the first differences of the regressors.
That is, they propose to use a traditional autoregressive
distributed lag (ARDL) model for the analysis of long-run
relations and find several interesting results for the

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
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All the above mentioned testing
procedures for the null hypothesis of stationarity
make use of the residuals obtained from one of
these alternatives.?®

Even though these estimators are
considered asymptotically equivalent, there may
be sensible differences in their use in finite
samples.

Kurozumi and Hayakawa (2009) study
the asymptotic behaviour of the asymptotically
efficient estimators cited above under a m local-
to-unity framework for describing moderately
serially correlated equilibrium errors in a
standard cointegrating regression equation,
which is similar to the formulation in (2.12) with
p=p, =1- ¢/m, where m—oo, and m/n—0 as

n—oo. This formulation imply that p=p,

approaches 1 at a slower rate that does the n
local-to-unity system, and it seems to be a more
convenient tool of analysis when we relate the
properties of the estimators for the cointegrating
regression model with the local power properties
of cointegration tests. We reserve the
consideration of this case for further
investigation.

After this discussion, the following
assumption presents four alternative
characterizations of the cointegrating, or
equilibrium, error sequence representing
different slight departures from the stationarity
assumption underlying the standard stationary
cointegration result.

estimators of the long-run coefficients in terms of its
consistency and asymptotic distribution.

2 Particularly, the Shin’s (1994) and MLS (1997) test
statistics are based on DOLS residuals, while that the
testing procedure proposed by Choi and Ahn (1995)
makes use of the feasible CCR residuals. The test statistics
proposed by Xiao (1999), Xiao and Phillips (2002) and
Wu and Xiao (2008) employ the FM-OLS residuals.

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
Mexico 2013, 4-11: 887-908
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Assumption 2.3. Cointegrating error
sequence
We assume that the error sequence in (2.5), u,,

is given by any of the following alternative
characterizations:
(a) A moving average (MA) unit root under
n local-to-unity asymptotics

Au, = (1- BL),, 8=1- n A, AL [0,A]  (10)
(b) A local-to-finite variance process
A__pu (12)

nl/a— 1/2 Yttt

u=uv,+
t t
a

With b, : iidB(rt) a Bernoulli random
sequence, mutually independent of v, and vu,,,

where v, is an iid sequence of symmetrically

distributed infinite variance random variables,
with distribution belonging to the normal
domain of attraction of a stable law with
characteristic exponent o € (0,2), denoted as
U, 1 ND(a).

(c) An autoregressive (AR) unit root under n
local-to-unity asymptotics with a highly
persistent initial observation

(1- pL)u, = 0, uy=& ,p°v.,, P=p,=1- ¢/n
,c>0 (12)

(d) A stochastically integrated process

u =uv + vgh, (13)

With h,,=h_,,+¢&  ag-dimensional
integrated process, and &, = (u,,vg, E¢.)¢ a

2g+1-dimensional mean zero stationary
sequence.
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The process considered in part (a) was
first proposed by Jansson and Haldrup (2002) as
away to introduce a notion of near cointegration,
and further exploited by Jansson (20053, b) to
derive point optimal tests of the null hypothesis
of cointegration, when A = 0, based on efficient
tests for a unit MA root.

The mixture process in part (b) was
proposed by Cappuccio and Lubian (2007) to
assess the performance of some commonly used
nonparametric univariate test statistics for
testing the null hypothesis of stationarity of an
observed process, so that in this paper we
extended their results to determine the effects of
an infinite variance error in a cointegration
framework. Making use of the distributional
results obtained by Paulauskas and Rachev
(1998), Caner (1998) propose how to test for no
cointegration under infinite variance errors.

These two first cases represent
departures from the standard cointegration
situation, preserving the same rates of
consistency for the estimates as in the referenced
case but determining some relevant changes in
the asymptotic null distributions of the
estimators. Case (c) is a slight modification of
the well known local-to-unity approach to
stationarity, where a stationary sequence is
modelled as a first-order AR process with a root
that approaches one with the sample size but that
strictly less than one in finite samples.

For a finite sample size, the behavior is
governed by the parameter c, determining the
degree of persistence of the innovations to the
process (Phillips, 1987).

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
Mexico 2013, 4-11: 887-908
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Elliott (1999) and Miiller (2005) propose
to extend the high persistence behavior of the
strictly mean reverting error process in finite
samples to the initial observation as well and to
investigate its effects on the size and power
properties of some tests for a unit root and for
stationarity. Here this characterization is used to
represent no cointegration when ¢ = 0, or
asymptotic no cointegration for a fixed ¢ > 0 and
n—oo, While a fixed value of ¢ > 0 indicates
stationary cointegration for a finite sample size.
Finally, case (d) represents a generalized version
of the heteroskedastic cointegrating regression
model of Hansen (1992b) as has been proposed
by McCabe etal. (2006).>° These authors
consider the case where the unobserved
stochastic trend components of the observed
model variables in (1) can be decomposed as
follows

Where w,_ ., =w,_, +tv . is a mxl
vector integrated process, with initial value
W, 0,0, 0= 0,(n"*°) for any 0< &£ 1/2, II,
is a (k+1)xm real matrix with rank k, and v,,,
(mx1), €, (k+1)x1, and V, (k+1)xq are mean

zero stationary processes which may be
correlated. Given the linear combination of such

a vector, cgn, , with ¢, = (1,- Bg)¢ as in equation
(2), then the error term u, can be decomposed as
follows

m,0’

u.= C?‘lf = (n#,m - Bmkm )Wm,t + Eo,r - Bkk,r + (ng,t - Bg’vkq,t)hq,t
= Clﬂme,z + th + C?\/rhq,r = ngwm,r tut V%rhq,r (14)

30 See also Harris et.al. (2002), and McCabe et.al. (2003)
for the treatment of some particular cases of this general
model of stochastic cointegration.
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with =, _=TIIg,, v, =cgk,, and
v,. = Vg, . Inthis setup, the condition =, =0,

is interpreted as stochastic cointegration, with
B, the stochastically cointegrating vector. If in

addition we set £[v¢,v, ]= 0, then we get what

can be called as stationary cointegration, with
v,. = 0, corresponding to the case of standard

stationary  cointegration.®®  Otherwise, if
Elvg.v, 1> 0, then the equilibrium error term is

said to be heteroskedastically integrated and the
variables in (2.1) are said to be stochastically
cointegrated. The definition of stochastic
cointegration nests standard cointegration and
heteroskedastic cointegration. Hansen (1992b)
calls the last additive term in (2), v¢.h, ., a bi-

integrated process, while that McCabe et.al.
(2003) establish the long-run memoryless
property of this type of processes through stating
that the optimal s step ahead forecasts, in the
sense of minimizing the mean square error,
converge to the unconditional mean as the
forecast horizon s increases. This means that the
behavior of the process up to time t has
negligible effect on its behavior into the infinite
future. The presence of the stochastic trend
component h_, induces long memory in the

product process, but the effect of shocks on the
level of the process is transitory rather than
permanent, justifying the so-called
stochastically trendless property of this type of
processes. It is this property that gives meaning
to the concept of common heteroskedastic
persistence.

3L If this additional condition is extended to V, =0,,,,

then the variables are all integrated and cointegrated in the
Engle-Granger (EG) sense.

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
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Once stated this underlying structure of
the unobserved trend components in m, , there is

an additional technical reason supporting the
concept of stochastic cointegration.

This argument makes use of the concept
of summability, originally introduced by
Gonzalo and Pitarakis (2006). As can be seen
from part(d) in Proposition 2.1, under stochastic
cointegration, the partial sum process of the
sequence of equilibrium errors is dominated by
this last component that is summable of order
1/2, while that the stochastically integrated trend
components n,, and n,, are summable of order

1. This formulation implies the generalization of
the  traditional concept of stationary
cointegration allowing for equilibrium errors
that are not purely stationary but display a lower
degree of persistence that the underlying
common stochastic trend as measured by a lower
order of summability.

Finally, for a further justification of the
theoretical and empirical relevance of this
specification, we may refer to the work of Park
(2002), Chung and Park (2007), and Kim and
Lee (2011), where it is introduced the concept of
nonlinear and nonstationary heteroskedasticity
(NNH) describing a conditionally
heteroskedastic process given by a nonlinear
function of an integrated processes. This
formulation represents a convenient
generalization of the nonstationary regression by
Hansen (1995) allowing for nonstationary
regressors, and as an alternative to the class of
highly  persistent ~ dynamic  conditional
heteroskedastic processes. Following Park’s
(2002) approach, the last term in (13) can be
interpreted as the simplest particular version of
the heterogeneity generating functions (HGF)
that are asymptotically homogeneous (the
identity function in our case).
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The following lemma states the basis to
obtain the main results of this paper concerning
the limiting behavior of the OLS estimator in (7)
and of the alternative estimator that will be
presented and examined in the next section.

Lemma 2.1. Given the error term of the

static linear cointegrating regression equation,
u,, in (2.5), then:
(@ When generated according to
Au, = (1- BL),, with ©6=1- n A, A [0,A],
as in Assumption 2.3(a) and under Assumption
2.2, then we have

[nr] r
n U= u b Uy(r)= B,(r)+ A B,(s)ds
=1 ° (15)

with dU, (r)= dB,(r)+ AB,(r).

(b) When generated according to the local-to-
finite variance process in 2.3(b), then

%_lgnr] _Z[Onr] R 0
éan a Ua,t'an a Uu,t%—b (Vl,a(r)lvzla(r))
t=1 t=1

with norming sequence a, = an**, and where
V.. (r) is the Lévy a-stable process on the space
D[0,1], with V, (r) its quadratic variation
process, v, (r)= V2. (r) - 200V, (s)dV, (s),
with v;_(r) the left limit of the process V, ,(r) in
r. Then, we have

n Y20, P U, (r)= B,(r)+ AV, (r) (16)

[nr] a,

And
n 1

nE MU P Gyt Ay + ANV, (1B, (1)- 0, Bk(S)dVM(S)}
t=1

17)

Forany 0 < <1, with G, and A,, as
in (9).
Afonso J. Asymptotic and finite-sample properties of a new simple estimator
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(c) When generated according to (1- pL)u, = v
with p=p,=1- ¢/n, ¢ 2 0, as in Assumption

2.3(c) and under Assumption 2.2, then we have
that

1/Z(U[,,r] u)P w,(e”- 1€+ 4, (r) (18)

Where €: NIO,(2c) 1, and
J,.(r)= 05" dB,(s)
=B,(r)+ co,e" B(s)ds is an Ornstein-

Uhlenbeck process, which is independent of &.
Further, as ¢ > 0 tends to zero, this is continuous

in ¢ and converges to J, ,(r)= B,(r).

(d)  When generated according to
u=u +vgh, , with h =h +& aq-
dimensional integrated process, and

& = (v, Vg, E¢)¢ a 2gq+1-dimensional mean

zero stationary sequence satisfying the
functional central limit theorem as in (8).

Then

- el B i
n (1: V)U[n,-] n (1/2-v) l/Zé U + nvin a Vgt qt§

t=1 t=1

[nr]

Where for the Iast term we have that
— ?U 1/2

)
n'g vgh,, n a Vot a a levq,b 0, B L (SIEV () +
t=1

(19)

With B, (r) and V,(r) two g-dimensional
Brownian processes given by the weak limits of

n?a e and m 28 v, respectively,
and A, —aJOE[ggft/ ot)

=&, Tr(Elv, &¢, ;1) Thus,
n U, = 0,(n*?) and
n'U,,=n'avgh . +0,(n*?) under

stochastic comtegratlon.
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Proof. For the result in part (a), see
Appendix A. For the results in part (b), see
Lemmas 2.1 and C.1 in Cappuccio and Lubian
(2007) for (16), and Appendix B for (17). These
results make clear that the weighted sum of the
two component processes in (2.11) allows to
obtain these composite results. If, instead, we
consider u, =u,+ Abu, ., then the infinite

variance process will dominate the behavior of
the scaled partial sum process as can be seen
from the following decomposition

[nr]
- 1/2 —_ 1/a-1/2 1/ay- 19 —_ 1/a-1/2
n U, = B, (r)+ Aan’* *(an”*) *q by, = O, (n"*?)
t=1

With no finite limiting results available
in this case. For the result (18) in part (c), see
Lemma 2 in Elliott (1999). With ¢ > 0, the weak
limit of the covariance-stationary series u: is

nu, b M, (r)= wge” + J, (r), which is a
stationary continuous time process.

Finally, the result in part(d) follows from
standard application of the convergence to
stochastic integrals of a stochastically trendless
process.

Remark 2.1. Given that B,(r) can be
decomposed as B,(r)= B, (r)+ y@B,(r), with
= O '®,, , then the limiting process U, (r) in
(2.15) can be decomposed as
Up(r)= B, ,(r)+ 'YgBkA(r) with
B, A(r)= B, (r)+ A0y B, (s)ds and
BA()= B, (r) +A0yB,(s)ds.

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
Mexico 2013, 4-11: 887-908
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Similarly, the limiting processes Z,,(r)
and J, .(r) in (16) and (17) can also be written as
Zq,)\(r) =B, (n+ 'YEBk(r)"' )\Vl,a(r)a and
B ()= Jcr) +yg, (r), with J, (r) an
Ornstein-Uhlenbeck process defined on B, (r),

that is J,, .(r)= B, (r)+ co,e" *“B, (s)ds, and
similarly for J, .(r) based on the k-dimensional
Brownian process B, (r).

The first two cases considered determine
a modification of the standard formulation of
stationary cointegration, but are susceptible to
produce consistent estimation results.

The next result establish the consistency
rate and weak limit distribution of the OLS
estimator in (7) in the cases (10)-(12).

Proposition 2.1(a) Under Assumption 2.2
and the generating mechanism given in (10) and
(11) for the cointegrating error term, we have
that the limiting distribution of the OLS
estimator of the cointegrating regression
equation in (5) is given by

HT,6,, @)+ AL, - BIL
§ (B~ B) ;

b ((‘)Dlm(s)m(s)ws)' 1%?3

ST

(5198, (52, ®,.,0

pid B (s)T(s)F
Gku ] gAkuB é

9
A § (20)
Where m(r)= (tg(r),Bg(r))¢. T(r) and
Hx(1) are given by T(r)= T (r)= 0,B,(s)ds, and
H,(1)= 0, B,(s)B,(s)ds when u, is generated as
in (10), while T(s)=V,,(r) and
H.(1)=V,,(1)B,(1)- (‘)0 B, (s)dV, ,(s)
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When wu, is generated as in (11). (b)
Under Assumption 2.2, and the generating
mechanism given in (12) for the cointegrating
error term, then the limiting distribution for the
OLS estimator of the cointegrating regression
equation (5) is given by

TG, )t A B - B (o, mbmtses) o i3

B” - B, 3 0 0 (2 1)
Where

1 1 1
(‘)0 m(s)M, . (s)ds = wu.ﬁ(‘)o e“m(s)ds + (‘)0 m(s)J, .(s)ds (22)

AL

Proof. The results follows directly from
parts (a)-(c) of Lemma 2.1, and the continuous
mapping theorem.

From (20), it is evident that the direct
impact of the cases (a) and (b) in Assumption 2.3
on the limiting distribution of the OLS estimator
is through the value of the parameter 2,
indicating the degree of persistence of the error
sequence u, in case (a), and the relative

importance of the infinite variance component in
case (b). The final effect will be different in each
case due to the very different behavior and
properties of the terms T(s) and Hy integrating
the last component in (2.20).

The question of assessing the impact of
these choices on the FM-OLS, CCR and DOLS
estimators is not considered here, and it is left as
an extension of the above results in future
research. On the other hand, the results from
(2.21)-(2.22) indicate that the impact of a highly
persistent initial observation introduce an
additional perturbation into de asymptotic
behavior of the OLS estimator, which is
inconsistent for the cointegrating vector B, .

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
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Without the consideration of this
additional source of persistence, the case of
stationary but highly persistent error terms in
finite samples determinate limiting
distributional results that are equivalent to what
are obtained under no cointegration.

Remark 2.2. As has been established in
Harris et.al. (2002) (part (ii) of Theorem 1), the
result in (19) is only of application for the OLS
estimator in (7) under stationary cointegration (
Elvg,v, =0 and V,' O, ) and only if

o, = Elvec(V,,u.]' O, . In this case we get
vnB, .- B)=0,0), and
T, l(&,,- 0,)+ AL, B, B)I=0,(1), so
that é,,- a,=0,(n"?) in the case of
stochastically integrated regressors (V,,,"' O,
) containing a deterministic trend component (
A.," 0,,.1). Thus, the relevant results for the

limiting distribution of the OLS estimators in (7)

are given by n'*& 1t u = 0,(n *%), and *2

o _ f o 1/2 I i‘ -1/2 Wt X
(1/,1)?;1 Ny enle %(1/,1)?;1 (n h“ A Ik'k)gckq + Op(n )b {Oo (Bq(s)A Ik’k)ds}(rkq

Under heteroskedastic cointegration with
stochastically integrated regressors, that is when
Elv¢,v, 1> 0, then it can be proved that

-3/2g n _ -1/2
n>ta L, U= 0,(n "), and

)V,?,;](”' 1/zhw)+ Op(n' 1/2)

at

n*8 neu = 1/ng (n*?hg Al Elvec(V,
t=1

t=1

o} (‘):(Bq(s)stA Ik,k)E[vec(qu',)vgt]Bq(s)ds

32 The details of the derivation of these results in our more
general setup, not included in this paper, can be requested
from the author.
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Which determine that
a,,- a,=0,n), and B, - B,=0,(1). In
order to obtain consistent estimation results in
this case, Harris et.al. (2002) propose to utilize
an instrumental variable (IV) technique by
defining m,_, = (z¢, ., X¢,_ )¢ s =0, and using

m,_,, for s >0 as an instrument with

a  (s)0 @ o »
p,n v o v o

é" - ga mt— sméz a mt» sYt
Bk,n (s)o t=s+1 9 t=

The so-called AIV(s) (asymptotic V)
estimator. With this estimator we have that the
parameter o, is replaced by

q
Gyys = Elvec(V,,. ], where o, . ® 0, if we

q,t- s
let s—>o0. As a consequence, this estimator
should be consistent by letting s = s(n)—0, and
s/n—0 as n—co. These authors require that s =
O(n*?). However, the limiting distribution of
this estimator is contaminated by the presence of

the parameters A, = 4 _ E[v, &¢, ], fori=0,

1, due to the endogeneity of the stochastically
integrated regressors, so to obtain a useful result
in practical applications it must be imposed the
extra exogeneity condition
E[Vq,tggt- j] = E[\/t¢k€$t— j] = Oa.q for a”J =0,+1,

+2, ... These authors argue that any other existing
standard procedure for asymptotically efficient
estimation of the model parameters in this setup
will work as usual. Particularly, given that the
feasible FM-OLS and CCR estimators require
the use of a consistent estimator of the long-run
covariance matrix Q based on the sequence

€. = (u,,CE)¢, with

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
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Ck,t = Ale,r = Hk,mum,t + ASk,t + (qu,t - qu,r— 1)
hye 1t V.8, it may be expected seriously

biased estimates given that, in general,
EC,1' 0,,,with

q,t-1

Elu,]= Elvgh, 1= Elvgh, 1+ § EIVEE, ]

Jj=1
E[Ck,t]: E[(qu,t- qu,t-l)hq,0]+ E[qu,tE.)q,t-l]_ E[qu,tE.Jq,t]
, Where E[u,]= O(t), and E[u,]= 0 only under
the above exogeneity condition and also
Elvg.h, 1= cglV,h, 1= 0, that trivially holds

if h,,=0,. Thus, only a kernel-type estimator
defined as the sample analog of

- (/na 4 L, 88, with &= ¢ - £[¢,],
can produce the desired results. Next section is
devoted to the analysis of an alternative
estimation method to those considered here,
which has been recently proposed by Vogelsang
and Wagner (2011), that allows for a unified
treatment of all the different data generating
processes treated in this section and represents a
very interesting and easy to use estimation
procedure for cointegrating regression models.

An alternative asymptotically almost efficient
estimation method

The new estimator of a cointegrating regression
model proposed by Vogelsang and Wagner
(2011) is based on a simple transformation of the
model variables and allows to obtain an
asymptotically unbiased estimator of the
cointegrating vector B, in (5), with a zero mean

Gaussian mixture limiting distribution under
standard stationary cointegration. The first step
requires to rewrite the cointegrating regression
model in (5) as

St = ag'sp,t + Bgsk,t + Ut (22)
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t
=1 T

Where
S.=4 ., X,;,and U,=4a _ u, are obtain by

Jj=17
applying partial summation on both sides of (5).
This formulation can be called the integrated-
cointegrating regression model, where the vector
of transformed trending regressors in (22),
g, = (S¢,,S¢,)¢, can be factorized as:
gt :g nl"pln ) 0p+1,k gl/n)sp,m%: Wr?gtn
nAk,prp,n n\/ﬁl k,k Hk,tn 4] '
Where S, =T,.4a =T,.S, ..
Sie=AS,.+ H. with H = (1/nJ/n)H,,,
and H,,=4a.m, as it comes from
Assumption 2.1. The OLS estimators of a., and
B, from (22) are exactly invariant to the trend
parameters in X, ,, and partial summing before

estimating the model performs the same role that
the nonparametric correction used by FM-OLS
to remove A,, in (9), but still leaves the problem
caused by the endogeneity of the regressors. The
solution pointed by these authors only requires
that X,, be added as a regressor to the partial

sum regression (22), that is

S,=a'.vy

_
1Y Sp= 4

(23)

t
=1 Cp,jn

S = agsp,t + B+ YEX T e (24)

With e, = U, - ygX,,. Thus, (24) can be
called the integrated modified (IM)
cointegrating regression equation. When the
integrated regressors do not contain any
deterministic components (that is, d,, =0, in
(1), with A, ;= 0, ., under Assumption 2.1),
which is the case considered in Vogelsang and
Wagner (2011), then the augmented vector of
regressors in (24), g, = (S¢,,S¢,, Xg,)¢, can be

factorized as

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
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as, 0 @l,. 0., 0., %/ns o Taking into account that the error term in
s“; ooer AL, 0, ® H., =Wy, the augmented integrated representation of the
g 0, Oy NAlE Mew & 25) cointegrating regression equation (24) is given

o by:

Where ¢,, is stochastically bounded, Y

with: e = Ut_ 'Y?nk,t_ YgAk,p pt: - Y?Akp pt
(o1 Thenn Ve, =n "z, - ™ ”yﬁAk T

&gp(r)oz OTP(S) SE with o @ V)zt =@ V)U:' n Wz V)Y?rlk o where
i1 P O)= £, ()= §0, B, (s)dsz (26) under the cointegration assumption (with v =

B(rlg & By(r)

[SIEE

Where, as with (6), it is verified that
0, 9(r)ggr)dr> 0. In the case of

deterministically trending integrated regressors,
that is with A, ' O, ,,,, then the vector of

regressors in (24), g, = (S¢,,S¢,, Xg)¢ s
decomposed as

& Op+ 1
A, [/, 5 12/n)S,,
AV (EVAN)) i

9,= W,g,,+

& l=lel-]-]-1-]- 1O

Where (1/+/n)T,;, is O(n~?) in the case
of stochastic regressors containing at most a
constant term, that is p = 0, and O(n*?) for any p
> 1. Thus, at the expense to develop an
appropriate treatment in the general case, we
proceed under the assumption that A, /=0

k,p+1
or, when At 0 pin that
g.= W.g,,+0(mn ) for p = 0. This

formulation allows to write the scaled and
normalized bias vector from OLS estimation of
(24), which is called the integrated modified
OLS estimator (IM-OLS), as

a0 8- a0 BT, (6, - )
&= E% =t WE B ”“”(ffa," B
8,5 ¥, m - v

§'

X o
= g(l/n)a gt,ng?n%

(1-v)

Wl g, ",
27)
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1/2) we get n 'z, b B,(r)- ygB,(r)= B, (r)
Whenevery, = y,, = Q. '»,,, Where the second
equality comes from the decomposition
B,(r)=B,,(r)+ og, B, (r), with
B, (r)=(1- ¢) 'B,.(r), ®,=(1- ¢) e, and
E[B,(r)B,,(r)]= 0,. This is also the weak limit of

12 - —
n ‘e, whenever A, /=0 or when p =0,
where I} =r1,,=1, Wwhile that when

A,' 0 and p > 1 we have that

n ViAo, = O(n *7), and this term
will dominate the behavior of n */?e,. On the
other hand, under no cointegration (with v =
~1/2), we have n"*?z,= n *?U,+ 0,(n""), and

this term will domlnate the limiting behavior of
n e unlessp>2when A ' 0

k,pt1

k,pt1

kp+1

Under standard stationary cointegration,
where u, = ¢u, , + u,, with 0£ d<1, v, asin
Assumption 2.2 and v = 1/2 in equation (27), the
consistency rates of the estimators of the trend
parameters o, and the cointegrating vector B,

are the usual ones for the OLS estimator in (7).
More importantly, what is especially remarkable
is that the asymptotic distribution of the IM-OLS
estimator in (27) is zero mean mixed Gaussian,
but with a different conditional asymptotic
variance compared to that of the FM-OLS
estimator.
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From Theorem 2 in Vogelsang and
Wagner (2011), the limiting distribution under
cointegration of the scaled and centered IM-OLS
estimator of (ag,Bg,yg)¢ is given by
ahllzr;,j,(&%,n' o )_ . 0,
Enﬁfm):bw (o, stsiner) g g, (riar

%,n- Ye il (28)

Where the limiting random vector &°
can also be written as

& = J%wmw:&ﬁGm-qmen
(o) i commn

With  G(r)= 6,9(s)ds in (29). The
correction for endogeneity based on the
inclusion of the original regressors in the
integrated-cointegrating  regression  works
because it is of same stochastic order that U,
under cointegration and all the correlation is
soaked up into the vector parameter

= Q. '®,,. Onthe other hand, under standard

no cointegration when the cointegrating error
term is a fixed unit root process, that is when

u, = u, ,*+ v, with ¢ =1 and v takes the value v
-1/2, then we get

e e, - B
E B/kn Bk —I> @f’ (o0 g(r)g(r)wr) 0, 9(r)T, r)dr

n'%,- v, % (30)
With T (r)= 0,B,(s)ds, that can be
decomposed as

T.(r)= 04 B, (s)ds+ oy BHs)dsy,,
=T+ gdr)y,,, with v = Q. '®,,, so that

the limiting random vector & can also be
written as

aﬂp’flg 1 .

& - gvku & (o, atnamer)
0, &

With 0 g(r) ilr)dr= ¢ 0[G(l) G(r)IB,  (r)dr

(‘)O a(r)T,  (r)dr
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This result indicates that, besides the
change in the rates of convergence of the
estimates and in the Gaussian process driving the
mixed Gaussian distribution, there is an
additional asymptotic bias term affecting the IM-
OLS estimator of the cointegrating vector B, in

the case of endogenous regressors (®@,,' 0,).

Next result establish the limiting
distribution and properties of the IM-OLS
estimator in equation (27) under the Assumption
2.3 concerning the behavior of the cointegrating
error sequence U, .

Proposition 3.1. Under Assumptions 2.2
and 2.3 for the cointegrating error term, then for
the IM-OLS estimator of (ag,Bg,yg)¢ computed

from (24) we have that:

(@ For v = 1/2, and u, given in Assumption
2.3(a)-(b), then

BT (b, 0,
- B0 b 8o dnmner) oo

n (31)
with & as in (28)-(29), where
T.(r)= 0y B,(s)ds in the case of the Assumption
2.3(@), and T/(r)=V,,(r) in case of the
Assumption 2.3(b). Also, in the cases of the
Assumption 2.3(c)-(d) we have that & = 0 (n),

and & = 0 (Vn), respectively.

[SUN

(b) For v = -1/2, and u, generated as in
Assumption 2.3(c), then

& VT, (8, o )
m,n - ﬁk

n 1(%,’ Y

#- W@mwﬂmww

[STURER \

(32)
Where T, ()= 0,M, (s)ds= w,§0ge“ds+ 0y, (s)ds,

0%u,c
with o, e“ds= - (1/c)(1- €*).

Afonso J. Asymptotic and finite-sample properties of a new simple estimator
of cointegrating regressions under near cointegration. ECORFAN Journal-
Mexico 2013, 4-11: 887-908



Article

902
ECORFAN Journal-Mexico

OPTIMIZATION

(c) For v. = 0, with u, generated as in
Assumption 2.3(d), and standard integrated

regressors with V,_, = 0, _, then
(8, 0,)0 .
‘E:“Z(B/‘k’n B3P (0 g(r)g(r)sﬂr) 0, g, e
%, - 'Yk)@ (33)

Where the limiting random process T_(r)
given by T (r)= 0,B_(s)@V,(s)+ rA,

Proof. These results simply follows from
Lemma 2.1, the continuous mapping theorem,
with
n 1/ze[nr] =n 'y Ui - YPW [nr]n B, (r)+ AT,(r)
, in the cases of the Assumption 2.3(a)-(b), and
the same development as in the proof of

Theorem 2 in Vogelsang and Wagner (2011).

Remark 3.1. From part (a) of Proposition
3.1, equation (31), in the case of the local-to-
unity MA root in Assumption 2.3(a), we get
T(r)=T (r)+ y£9,.(r), where

T.i(r)= 0B, (s)ds, v,, = '@, and g,(r) is
given in equation (26). Then, it is immediate to
rewrite equation (31) as

20,.,0
&b &+ ?\Em =+ A(o g(r)g(r)sﬂr)
Ok ﬂ
Where the second term above determines
an asymptotic bias component in the limiting
distribution, while that the last multiplicative
term can also be written as

05 9(NT,  (r)dr= 0.[G(1)- G(r)B, (r)dr, as

equation (39). As can be seen from equations
(38) and (40), for any A > 0, this limiting
distribution is a mixture of the corresponding

ones under standard cointegration and no
cointegration given above.

1

O, 9T, (dr
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Also, denoting by
e V)g@p(k) = V)et - g;én@z] the sequence of

scaled OLS residuals (IM-OLS residuals) from
estimating the IM cointegrating regression in
(34), then we get the following limiting

distribution
aﬂ 0

8, (0P B[+ ATr)- g«rlﬁﬁ" AEn ”\(o gtsg«sids) og(s)rkts)rfsf
05

=8, g0 + T, - o) (34)
With

&2 = (0! g(s)gds)ds)y * 01 g(s)T, (s)ds, so that it
is free of the effect of the additive limiting bias
component while that the two additive
components in the last line of (35) have the same
structure and are not mutually independent.
Additionally, from part (b) of the Proposition
3.1, we have that the last term in equation (32)
can be decomposed as

&, 9T, (1 = - w,(1/clEQ, 9~ e")dr+ & 16+ G, (rlar

So that the IM-OLS estimators has the
usual divergence rates as under standard no
cointegration, but with limiting distribution
given by

& - 0,53 dnner) g o~ ear+ (g siginer) g 160 G, e

Where the first term can be interpreted as
a stochastic bias-type component, while that the
second one resembles the limiting distribution
under standard no cointegration, with B,(r)

replaced by J, .(r).

Remark 3.2. The condition imposed on
the integrated regressors in the framework of
stochastic cointegration in part(c) is to simplify
the calculations needed to obtain the limiting
distribution and to preserve a similar structure
that in the standard case. Thus, given that we can
write

oy flaw beafig Boafag 3
n /Hk,ﬁl'lk,m; 3,2%1 E+E¥ﬁ 3 IV» ﬁ;ﬁ 1h‘¢tAI“)vec( r)ﬁ

n
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And
l/znk t Hk,mn_ 1/2Wm,t + n_ Y 2 + V
, thenwith V. =0, . We have that

kgt —

(1/n> (n*2H, ) Vng,)= 10

=1

(1/n)a (n W, ) W g, + o, (1)
b IT,, 0 (0 B (s)ds)B (rdirI1¢,,

with B, (s)=IL B, (s) in g(r).

These results makes clear that each of the
alternatives considered will produce a different
effect on the corresponding limiting distribution
and, consequently, on the stochastic properties
and behavior not only of the IM-OLS estimators
but also on any other statistic based on it.
However, from these limiting results it is not
easy to deduce the impact on the precision of
these estimates. Thus, in order to complete these
findings we also present the results of a small
simulation experiment designed to evaluate the
finite sample estimation error of this estimator
through the computation of the bias and RMSE
for each of this alternatives describing the
stochastic properties of the error term in a
cointegrating regression equation.

Finite sample results

To evaluate this finite sample properties in parts
(@), (b) in Proposition 3.1, we use the same
model as in Vogelsang and Wagner (2011)for k
= 2, with mn,=n.,,7¢&,, Wwhere
&= Cle,,, C)=1,,+CyL, and
C,, = diag(c,,,c,,), with c11 = c22 = 0.5, while
that for the error term u, we use

u, = pu, 4 + U, + 'Ygak,t ’

With vy, = (v,,v,)¢ controlling the degree
of endogeneity of the regressors, and the iid
sequence (u,,eg,)¢ that follows a multivariate
standard normal. Particularly, we set B, = (1,1)¢
,andy=y1=72=0,0.3.
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The results for this case are shown in

o 1/ZhTabIe 1 of Appendix C. On the other hand, to

évaluate the performance of the IM-OLS
estimator under heteroskedastic cointegration
we use the same model as in Harris et.al. (2002),
with

ay, &_m,,0_ an,, &Otg ©0 08
b5 b6 b &b W 05
Whereg, . = ¢g;, , +e,,i=0,1,

Vit ¢V11t 1+\Fezw Ah _e3t’ and
Aw,, = e,,, with u,=-Bv, th +g,,.- Be,,
for the cointegrating error term, where
B= m,,/m,, under stochastic cointegration. Also,

for the noise components we assume that
€ = (egern€y)¥ Ny(Og,Ry5), where
R, (pu),/ 01,41 With p, .= Ele, e, ]. We set
the values p,;=p;;=05, p,,=0.25,
Po,=P,=P,=0, i =0, 1 2 3 and
P,;=0,0.5 where this last correlation

coefficient measures the degree of endogeneity
of regressors. For the AIV estimator we set
= [¢,n'?],i=1,2,3, with c, = 0.75,

¢, =1.00, ¢,=1.25 for the lag order. In both

cases we evaluate the performance of the
integrated-OLS (I-OLS) and the IM-OLS
estimators computed from (32) and (33),
respectively.

From Table 1, we can see that the IM-
OLS estimator always outperforms the standard
OLS results in terms of finite sample bias, but
with a higher RMSE, for increasing values of A
in case 2.3(a). Very similar results are obtained
in the case of the infinite-variance mixture
process in 2.3(b), even under exogeneity of the
regressor. In the last case of highly persistent but
stationary equilibrium errors in finite samples,
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Table 1.C, both estimators are biased
with a slightly lower bias for the IM-OLS
estimator. When uo = Op(1), and particularly uo=
0, the results are absolutely comparable to these
in terms of the finite sample bias, with a slight,
but systematic, reduction of the RMSE due to the
lower degree of persistence.

From Table 2, in the case of the finite
sample performance of the AIV and IM-OLS
estimators, the IM-OLS estimator performs as
well as the AIV estimator in almost all the
situations, except under endogeneity of the
regressor and high correlation in v,, ., where the

AIV estimator, specially designed to taking into
account for this effect, slightly outperforms the
new estimator considered here.
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Appendixes

A. Proof of Lemma 2.1(a). Using the

representation Au, = c,(L)u,, then we can write

t

u,=u,*+c,(l)a ;_,u;. Making use of the

Beveridge-Nelson (BN) decomposition of the
first-order lag polynomial ¢ (L) with
©=1- n'A, we have that c,(L)=1- 6L
=1- 6- B(L- 1)=n *A- 6(L- 1), which gives
Y2 M4 f u,)+ Bu, + uy- Bu,.

Then, the scaled partial sum of u
n?u, . =n"a "y weakly converges to

tr] —

u,=An
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U, (r) by direct application of Assumption 2.2.
B. Proof of Lemma 2.1(b). Making use of the

0LS I-0LS  IM-OLS 0LS I-0LS  IM-OLS
) Panel A Bias Panel B. RMSE
p=00  y=00 010 000003 -0.00097 -0.00088 00300 00416 00437
020 -000060 -0.00081  -0.00057 00382 0054 00484
030 000028 -0.00046  -0.00020 00720 00604  0.0559
040 000123 000052 -0.00010 00483 00750 00738
050 000078 000208  0.00199 00468 00742 00786
100 000061 000070  -0.00048 01029 02368 02028
y=03 010 001164 000151  -0.00027 00345 00485 00414
020 001181 000066  0.00019 00415 00605 00597
030 00118 000267  0.00108 00485 00781 00649
040 001279 000276  0.00133 00486 00787 0072
050 001209 000195  0.00114 00510 00748 00691
100 001163 000059 0,000 01074 01918 01016
p=03 y=00 010 000066 000111  0.00062 00371 0.0565 00547
020 000015 000015  0.0073 0.0444 01152 0.0800
030 000040 000010  0.00041 00422 00667 00654
040 -000026 -0.00029  0.00048 00543 0084 00769
050 000143 000048 -0.00152 0135 01133 00898
100 -000328 -0.00008 -0.00129 01567 01739 01569
y=03 010 002008 000221 000127 00493 00662 00553
020 002124 000290  0.0021L 01047 00676 00708
030 001969 000227  0.00109 00623 00766 00700
040 002130 000345 -0.00028 00809 01068 01127
050 001973 000035 -0.00030 00669 01338 01147
100 002038 000225  0.00048 00979 01761  0.16%9

decomposition of u, as in (11) we trivially have
that

1/2 1/2 1/a 1/2

n? (M Ju = (0, o+ ManteY T (0
t=1 t=1 t=1

‘nk,t )btuu,t

Where for the first term we have the same
result as in (9) using u, = v, , while that for the
second term we have that it can be written as

n n n 3 t il
1 - 12 -1/2, _nk,D 1 -12 1 -12 -1/2 2
(@n*y*4 (0 **n, )by, = T(an “y'§ by, +(an’y'§ gn 28 sk,,.gb,uuv,
t=1 n t=1 t=1 j=1

@ n o3 no 0
- 1/ay- 12 - 1/2 9 x
= oY bu, A ez

t=1 j=1 2]

n i -1
- (an'?) ' b,u“!n' 28 sk’]? 0,(1)
S b

J=1

As in Lemma 1 in Paulauskas and
Rachev (1998). Then, the desired result follows
by the joint convergence of each of these
functionals to their corresponding weak limits.
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C. Simulation results 05 05 MOS0 WS IS
B o ¢ Panel A Bias Panel B. RMSE
O  10LS IMOLS _ OLS _ FOLS  INMOLS p=00  y=00 1 00516 00069 000076 030 0676l 05663
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{ 2000051 000039 000015 00267 00414 0.03%5 006 D003 00066 0278 0L 040
3000091 -0.00143 000065 00286 00461 00429 40004 00037 000222 0415 04811 04356
400003 00041 000115 00301 00498 00471 5000300 00130 000012 0248 04430 0399
5000010 000040 000018 00324 00537 0.0507
0 0000 0008 0003 0 0L 007R 10 000243 000284 00003 01600 0355 027
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2 001778 00074 000618 00361 00472 0.0391 2 02160 020143 02699 030% 06688 05959
300002 001064 00095 00388 00518 0.0438
Lm0 o0e 00%  oms 0mE 00 30251 018603 010207 0368 06140 0534
500265 001721 00145 0048 00607 0056 4 018%3 0L5766 016007 03292 05587 04803
10 00419 00347 003146 00641 00952 00829 50U 0130 01387 0309 0540 045
p=03 y=00 1 -0.00085 -0.00021  -0.00073 0.0364 0.0545 0.0531 10 0100 00778 008145 0 0% 03063
S obm omm oww o oo oo SR VU B T T
400043 000011  -0.00070 00417 0071 00668 2000263 001379 000568 04163 08412 0.7467
5 000165 000206 000213 00454 00791 007 300032 000499 000076 03663 07306 0647
10 000073 000136 000112 00661 01267 01128
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Table 1 502230 018046 020133 04310 07236 06209
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