
115

Capítulo 9 Sistema de visión integrado en FPGA para el cálculo de la orientación

de objetos usando momentos de inercia de segundo orden

Chapter 9 Vision system FPGA-integrated for object orientation calculation using

second order moments of inertia

IBARRA-BONILLA, Mariana Natalia†*, ARAGÓN-MORALES, Jesús Ángel y SÁNCHEZ-TEXIS,

Fernando

Instituto Tecnológico Superior de Atlixco. División de Ingeniería Mecatrónica.

ID 1
er

 Autor: Mariana Natalia, Ibarra-Bonilla / ORC ID: 0000-0001-7123-9105, CVU CONACYT

ID: 237756

ID 1
er

 Coautor: Jesús Ángel, Aragón-Morales

ID 2
do

 Coautor: Fernando, Sánchez-Texis / ORC ID: 0000-0002-1792-8855, CVU CONACYT ID:

95289

DOI: 10.35429/H.2019.2.115.125

M. Ibarra, J. Aragón y F. Sánchez

mariana.ibarra@itsatlixco.edu.mx

A. Marroquín, J. Olivares, P. Diaz y L. Cruz. (Dir.) La invención y las mujeres en Mexico. Handbooks-©ECORFAN-
Mexico, Querétaro, 2019.

116

Resumen

Este capítulo presenta un sistema de visión capaz de calcular el ángulo de rotación de los objetos

capturados por una cámara de video. Se propone un algoritmo basado en los principios de los

momentos de inercia de segundo orden. La idea principal es incorporar este algoritmo en un sistema de

visión con implementación en FPGA que corrija la orientación de circuitos integrados electrónicos, que

son manipulados por una máquina pick & place, durante el proceso de fabricación de placas de circuito

impreso. El sistema de visión funciona en un FPGA Spartan 6 y controla una cámara OV7670, una

pantalla TFT, comunicación RS-232 con una PC y una memoria SDRAM. El algoritmo para calcular la

rotación, usando Matlab, se ejecuta en la PC. Los resultados preliminares muestran en promedio una

precisión del 99.998% en el cálculo del ángulo de rotación.

Visión, FPGA, Ángulo de rotación, Segundos momentos de inercia

Abstract

This chapter presents a vision system capable of calculating the objets rotation angle captured by a

video-camera. An algorithm based on the principles of inertia second order moments is proposed. The

main idea is to incorporate this algorithm into an FPGA-vision system that will correct the orientation

of electronic integrated circuits, which are manipulated by a pick & place machine, during the printed

circuit boards manufacturing process. The vision system performs on a FPGA Spartan-6 and controls

an OV7670 camera, a TFT display screen, RS-232 communication with a PC and an SDRAM memory.

The algorithm for rotation calculating, using Matlab, is executed on the PC. The preliminary results

show in average a precision of 99.998% in the rotation angle calculation.

Vision, FPGA, Angle rotation, Second order moments

1. Introduction

In electronics, a printed circuit board (PCB) is a platform on which the components are mounted to

provide electrical interconnections between them. A PCB is found in almost all electronic products.

PCB manufacturing is very complicated, requiring large equipment investments and over 50 process

steps (LaDou, 2006). One of these processes is the components assembly on the PCB. The

miniaturization constant of the electronic components causes a greater PCBs manufacture with surface

mount technology (SMT). SMT is the process where the components are welded directly on the plate

surface. Currently, the SMT has replaced the through hole technique, as there are no holes to drill, and

thus the components can be placed closer, and therefore a reduction in the plate size and better

electromagnetic compatibility is generated, because the radiation space is reduced then a smaller

number of radiated emissions is produced (Prasad, 2013).

The PCBs manufacture using SMT is complicated, because it requires the different processes

execution and equipment large investments, for example a pick & place machine. A pick & place has

the function of taking electronic components, such as resistors, capacitors and integrated circuits, and

mounting them on the PCB in the position indicated by a computer. This work originates from the need

of the Mexican company: INTESC Electrónica & Embebidos, dedicated to the development boards

design and manufacture based on FPGA and microcontrollers using SMT (INTESC, 2019). INTESC

engineers have developed a pick & place machine with the purpose of increasing their production,

reducing assembly time and replacing the operator. However, this machine requires perfecting the

integrated circuits positioning on the PCB. The problem arises when the integrated circuits are placed

on feeder trays that do not provide an exact position and result in an offset in the components position,

therefore, it is necessary to incorporate a position correction system and thus eliminate the offset.

As a solution to this problem, it has been proposed to incorporate a vision system that works out

as feedback to the control loop and thus reduce the offset to the microns order. Because the SMT

assembly process requires working at high speed and precision, the proposed vision system must be

implemented on a computational platform capable of processing images with high performance, for

this, the digital signal processors (DSP) are being widely used in high performance applications and a

large amount data processing (Ganeswara, 2016), (Rao, et al., 2016).

117

The FPGA (Field Programmable Gate Array) represent a superior alternative to the DSP, since

the FPGA does not have a defined hardware architecture and can be configured according to the user

requirements using hardware description languages, such as VHDL, Verilog HDL, etc. (Monmasson, et

al., 2011). In contrast, DSPs have a fixed architecture with memory, controller and instructions

executed sequentially according to software.

Image processing algorithms must process a large amount of data (pixels) at high speed, and for

this type of applications, FPGAs are more suitable due to their parallel processing capacity (Patel, et

al., 2017). The above is not possible with DSPs due to their data processing architecture, which is

defined as 8-bits, 16-bits, 32-bits, etc. The present project proposes to develop the vision system for the

pick & place type manufacturing equipment used an FPGA for high-speed image processing and angle

rotation calculation of the components. The FPGA parallel processing capacity makes it more efficient

than a DSP.

The chapter organization is as follows: Section 2 describes the FPGA vision system and the

proposed methodology. Section 3 presents the description of the algorithm for the rotation angle

calculation based on the second order moments of inertia. Section 4 describes the preliminary results.

The conclusions and future work are presented in section 5.

2. FPGA vision system

A proposed vision system block diagram is presented in Figure 9.1. The camera incorporates a CMOS

VGA OV7670 image sensor, capable of working at a maximum of 30 frames per second at a resolution

of 640x480 pixels. The Asserta development board (INTESC, 2019) containing a Spartan-6

XC6SLX16 FPGA and 64 Mb SDRAM memory is used. The FPGA controls the images acquisition

and displays the video on a 4.3 inches TFT display screen of 480x272 pixels resolution. The vision

system general operation is as follows: the FPGA receives and processes the data from the OV7670

camera, each received frame is saved into the SDRAM memory and sent to the TFT display screen.

Additionally, a PC is communicated with the FPGA through the RS-232 serial protocol

communication, thus if the FPGA receives an instruction can send the captured image to the PC. For

the vision system, the FPGA incorporates 4 IP-cores or controller blocks to operate the OV7670

camera, RS-232 communication, TFT screen and SDRAM memory. The blocks programming was

carried out in VHDL language using the Xilinx ISE-Design Suite software. All blocks are

interconnected within a general entity for physical implementation in the FPGA Spartan-6. The blocks

implemented in the FPGA are presented in Figure 9.2.

Figure 9.1 General block scheme of the proposed system

Reference source: Author

 Matlab

FPGA

Spartan 6

XC6SLX16

TFT display screen

RS-232

Data and sync

signals

I

2

C

Data and

sync signals

SDRAM

Data

Control and

directions

0V7670 camera

118

Figure 9.2 VHDL hardware modules

Reference source: Author

2.1. Camera control block

The video-camera control block consists of the 6-state machine presented in Figure 9.3. Each state is

responsible for performing a specific task in the camera. The first state, called S0, performs an initial

configuration on the camera's internal registers. The appropriate configuration values are loaded by

means of an I2C serial communication port; which incorporates the camera for this purpose and that

was also included in the camera control block. The S0 state also checks if a correct camera

configuration has been made, and the machine does not change to the next state, if the camera does not

respond with a positive confirmation. The next state, called S1, monitors whether the camera is ready

to start the image frame transmission. The monitoring is done through the camera synchronization

signal, VSYNC, which indicates when a new image starts. The third state, called S2, captures the bytes

coming from the camera and groups them in a temporary buffer with the capacity to store a complete

line of 640 pixels. The pixels are stored in this buffer in an RGB-565 format. Each time a pixel is

captured, the machine moves on the next state S3. In state S3, the controller monitors whether the

current image line capture has already been completed. This is done by checking the HREF

synchronization signal from the camera. If a complete line has been captured, the block goes to state

S4, which is responsible for saving the pixels in the SDRAM and goes to the next state S5. In this state,

the machine monitors whether a new image line will be sent by the camera or if a new image will be

sent by the camera. If a line continues to be sent, the machine returns from state S5 to S2, however, if a

new image will be sent, the control will jump to state E1 to begin a new capture cycle.

Figure 9.3 Camera control state machine

Reference source: Author

119

2.2. SDRAM control block

This control block is responsible for storing orderly the pixels to the SDRAM memory. It also performs

a processing of each pixel in the image by threshold binarization. Thus, the original information and the

binarized information of the image is stored. This process is performed every time the camera control

block sends the order to store an image line. In this way, the waiting time between each line capture is

used to store the current line. In addition to the above, this block can read an image stored in the

SDRAM and send it to the TFT display screen control block or to the RS-232 communication block.

This process is performed between each waiting time for capturing a new image from the camera. Then

it can be seen that the block functions as a slave system, which awaits the camera control block order or

the RS-232 block order. In addition to these two processes, it autonomously transfers the information

from the SDRAM to the TFT display screen control for image display. However, if a transfer order,

from the RS-232 control, is received, the block interrupts the image transmission to the screen and

redirects it to the RS-232 block; providing priority of the transfer to a user computer.

2.3. Bloque de control de RS-232

This block allows to send an image stored in the SDRAM to a computer for processing. The user can

select the image type that is transferred between the original image and the binarized image. To

perform this task, the block accepts two 8-bits simple commands; the reception of a number 2 indicates

the original image transfer and a number 3 indicates the binarized image transfer. The information is

sent using a standard format: 1 start bit, 8 data bits and 1 stop bit. The block also verifies that all pixels

in the image are sent by counting them. The transfer rate reached by this block is 115200 baud.

2.4. TFT display screen control block

The principal function is to generate the TFT display screen control signals. The screen works under a

VGA scheme. That is, the controller must generate the vertical and horizontal synchronization signals,

VSYNC and HSYNC, to indicate to the screen when it will start the new image deployment. Pixel data

are sent in a 24-bit configuration (8-bits for each color). The block uses a PCLK clock signal to

synchronize the data and display of each image line. The image refresh rate is set at 15 frames per

second. In relation to the images display and screen control, this block is autonomous, however, to

obtain the pixel information the block depends on the SDRAM memory control block. This is due the

SDRAM block sends the information when it is available in the memory. However, when it is required

to transfer the image to a computer, the SDRAM control block interrupts the information normal

sending to this block and instead sends black pixels. For this reason, when an image is being

transferred to the user, the display of the image on the screen is interrupted and turns black.

2.5. Image processing

The processing that the FPGA executes on the images consists of a binarization. Applying the rotation

calculation on binary images reduces the processing time, because in this type of image it is easier and

faster to obtain the geometric and topological properties of the captured objects. To obtain binarization,

the first step is to work with the image in grayscale, thus the pixel data are values between 0 and 255.

The threshold value is fixed in the grayscale, this value is used to convert to a binary value 0 all pixels

whose gray level is lower than that threshold, and a 1 for all those pixels that exceed the threshold. It is

worth mentioning that to apply a fixed threshold implies controlling the environment parameters in

which the image will be captured, since any variation in lighting can cause changes in the image gray

levels that invalidate the fixed threshold. To execute the binarization process in VHDL code, the matrix

of the green color plane, of the RGB format, is acquired. Since being a 565 format, it is the plane that

has the most information. The pseudocode present in Table 9.1 is executed in the FPGA.

120

Table 9.1 Binarization process using a 75-fixed threshold

Algorithm. Fixed Binarization.

im : grayscale image of size (rows, columns)

imB : binary image

threshold = 75

 Initialize imB = 0

 While is moving im(x,y) x = 1… rows, y = 1… columns

 If im(x, y) > threshold

 imB = 1

 End

 End
 Return imB

Reference source: Author

3. Rotation angle calculating algorithm

In this work, the orientation is determined by calculating the axis, with respect to the minimum moment

of inertia (De la Fuente and Trespaderne, 2012). The minimum axis of inertia of a region will be the

line Ax + By + C = 0, such that the sum of the squared distances between the object pixels and the line

is minimal (Hibbeler, 2004). As presented in Figure 9.4, the vector (A, B) = (cos θ, sin θ) is a

perpendicular vector to the line, being θ the angle that forms the perpendicular from the origin to the

line with the axis x. Thus, the angle θ is easily obtained after the second order moments calculation,

 and . The axes of inertia pass through the object center of gravity (). According to De

la Funete and Trespaderne, and based on the equations applied in vector mechanics (Hibbeler, 2004),

the three second order moments of inertia of a region and are expressed:

 ∑ ∑ () ()

 ∑ ()

 (1)

 ∑ ∑ () () ()

 ∑ () ()

 (2)

 ∑ ∑ () ()

 ∑ ()

 (3)

The sum of all squared distances ∑

 is given by:

∑

 (4)

To determine the line that minimizes the sum of the squared distances, equation (4) is derived

with respect to the parameter θ, and equals 0, which results:

 () (5)

By trigonometry, it is known that () () and (), so

that equation (5) is rewritten:

 () () () (6)

Finally, the angle θ is:

 a tan

 (7)

The angle of rotation of the object captured by the camera is obtained applying the equation (7),

the atan2 function is used to avoid indeterminacies.

121

Figure 9.4 Representation of the object orientation on an image

Reference source: (De la Fuente and Trespaderne, 2012)

In order to calculate the moments of inertia it is necessary to extract some characteristics of the

image: area and center of gravity of the detected object. The area of a region on the image is given by

the number of pixels that constitute it, so it is given by the expression:

 ∑ ∑ ()

 (8)

The area is also called zero order moment. The center of gravity is obtained from the first order

moments divided by the area.

∑ ∑ ()

 (9)

∑ ∑ ()

 (10)

The algorithms for obtaining the center of gravity and the moments of inertia calculation are

presented in Tables 9.2 and 9.3.

Table 9.2 Obtaining the object center of gravity on the image

Algorithm. Center of gravity

imB: binary image (0=Background, 1=Objet) of size (rows, columns)

area = 0

Ix = 0

Iy = 0

 While is moving imB(x,y) x = 1… rows, y = 1… columns

 If imB(x, y)  0
 area = area + 1

 Ix = Ix + y

 Iy = Iy + x

 End

 End
Cx = Ix/area

Cy = Iy/area

Center = [Cx Cy]

Reference source: Author

122

Table 9.3 Obtaining the second order moments

Algorithm. Second order moments of inertia

imB: binary image (0=Background, 1=Objet) of size (rows, columns)

Center: vector with the coordinates of the center of gravity (row, column)

Ixx = 0

Iyy = 0

Ixy = 0

 While is moving imB(x,y) x = 1… rows, y = 1… columns

 If imB(x, y)  0

 Ixx = Ixx + (y  Center(1)) ^ 2

 Iyy = Iyy + (x  Center(2)) ^ 2

 Ixy = Ixy + (y  Center(1)) * (x  Center(2))

 End

 End

Reference source: Author

4. Results

In order to validate the algorithm for calculating the orientation and evaluate its performance, the code

was written in the Matlab software. The Matlab preliminary use is due to the difficulty to execute

floating point divisions in the VHDL language and to the calculation of trigonometric functions such as

arctangent, however the intention is to translate the algorithm into this language, so that it works

completely in FPGA. Matlab provides the image processing toolbox, which includes the regionprops

command. This command is used to measure the properties of a region in an image, so it is possible to

obtain the orientation of the image by directly applying this command. Different test images were

generated in the Fireworks CS6 design software, which by rotating an image provides the angle of

rotation.

Therefore, the results of the algorithm are compared with the rotation angles obtained with

Matlab and Fireworks. The integrated circuits encapsulates that a pick & place machine manipulates, to

which this work is directed, generally have a square or rectangular geometric shape, however to

evaluate the algorithm, more complex figures were also used, such as those presented in Figure 9.5.

Table 9.4 presents the comparison of the results obtained with 10 different images. Considering the

Fireworks measure as the reference, the second moment of inertia algorithm delivers an average

accuracy on the x-axis of 99.966% and on the y-axis of 99.968%.

Table 9.4 Results comparison of the orientation angle using test images

Image
Fireworks

[x, y]

Regionprops

[x, y]

2
nd

 order moments algorithm

[x, y]

1 [] [] []
2 [] [] []
3 [] [] []
4 [] [] []
5 [] [] []
6 [] [] []
7 [] [] []
8 [] [] []
9 [] [] []
10 [] [] []

Reference source: Author

123

Figure 9.5 Examples of test images generated in Fireworks

Reference source: Author

To execute the tests with the images captured by the OV7670 camera, the physical assembly of

the Figure 9.1 scheme was performed. The camera and the TFT display screen are attached to the

Asserta-board, which contains the FPGA Spartan-6, as observed in the Figure 9.6. Because the image

binarization process uses the fixed threshold method, it is necessary to keep the lighting conditions

controlled, since variations in the scene lighting can cause changes in the image gray levels that

invalidates the threshold set. For this reason, a three LED array is incorporated to keep the lighting

stable, which is displayed in Figure 9.7.

The final tests consisted of the images capture by the FPGA, which were sent by RS232 to a

PC, where the algorithm of the second moments was executed in Matlab software. Until now, the

captures are made in a controlled environment, because the integrated circuit is placed on a white

surface and 10 cm away from the camera. These integrated circuits are of SMT technology, such as

those manipulated by the pick & place machine. Figure 9.8 presents the integrated circuits 4-types

encapsulation and Table 9.5 the results of these images. For each type of encapsulation, 5 images with

different rotations were generated, completing 20 test images. By checking the 20 images in the

algorithm and comparing it with the results obtained from the Matlab regionprops command, an

average accuracy of 99.998% was obtained. This result is important because many industrial

applications require to know the orientation of an object. For example, the robot grip requires the

rotation of the object to close properly and thus succeed in capturing (De la Fuente and Trespaderne,

2012). Thus, our algorithm can expand its applications in the industry.

Figure 9.6 Physical assembly of the system

Reference source: Author

124

Figure 9.7 LED assembly for lighting control

Reference source: Author

Figure 9.8 Images captured from the OVG camera by FPGA and binarization results

Reference source: Author

Table 9.5 Rotation angle results

Encapsulated
Regionprops

[x, y]

2
nd

 order moments algorithm

[x, y]

% Precisión

[x, y]

TQFP [] [] []
SOIC-8p [] [] []
SOIC-28p [] [] []
QFP [] [] []

Reference source: Author

5. Acknowledgments

The first author appreciates the financial support of the Tecnológico Nacional de México for the

realization of the project, under the program of Support for Scientific Research and Technological

Development of the educational programs of the Decentralized Technological Institutes 2018.

125

6. Conclusions

A vision system with video capture in FPGA and rotation angle calculation in Matlab was presented.

The VHDL-code consisted of the OV7670 video camera controller, a TFT display screen, SDRAM

memory and RS-232 communication with a PC. On the PC an algorithm is executed in Matlab to

calculate the angle of rotation of the object captured by the camera. This algorithm is based on the

principles of the second order moments of static inertia. According to preliminary tests, performed on

20 integrated circuits images, this algorithm has an average accuracy of 99.998%, which is expected to

solve the problem of surface mounting that presents a pick & place machine developed by the mexican

company INTESC, when assembling components to their development boards. The work in progress

consists in translating the Matlab algorithm code into VHDL language, so that the whole system is in a

hardware implementation and can be installed in the pick & place machine. Finally, it is suggested that

to apply this algorithm in the industry it will be necessary to increase the camera resolution by a

minimum of 5 megapixels and thus achieve better vision results, as well as work in a white light

environment.

7. References

De la Fuente López, E., & Trespaderne, F. M. (2012). Visión artificial industrial: Procesamiento de

imágenes para inspección automática y robótica. Universidad de Valladolid, Secretariado de

Publicaciones e Intercambio Editorial.

Ganeswara-Rao M. V., Panakala, R. K. and Mallikarjuna-Prasad A. “Image Processing using FPGAs: a

Framework”. IJCTA International Science Press, vol. 9, no. 19, pp. 9191-9197, 2016.

Hibbeler, R. C. (2013). Engineering Mechanics: Statics. Pearson Education.

INTESC Electrónica & Embebidos (01-04-2019). Main page. México: Intesc. https://www.intesc.mx/.

LaDou, J. (2006). Printed circuit board industry. International journal of hygiene and environmental

health, 209(3), 211-219.

Monmasson, E., Idkhajine, L., Cirstea, M. N., Bahri, I., Tisan, A., & Naouar, M. W. (2011). FPGAs in

industrial control applications. IEEE Transactions on Industrial informatics, 7(2), 224-243.

Patel, D., Parmar, R., Desai, A., & Sheth, S. (2017, January). Gesture recognition using FPGA and

OV7670 camera. In 2017 International Conference on Inventive Systems and Control (ICISC) (pp. 1 -

4). IEEE.

Prasad, R. (2013). Surface mount technology: principles and practice. Springer Science & Business

Media.

Rao, M. G., Kumar, P. R., & Prasad, A. M. (2016, January). Implementation of real time image

processing system with FPGA and DSP. In 2016 International Conference on Microelectronics,

Computing and Communications (MicroCom) (pp. 1-4). IEEE.

