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Resumen 

 

El presente trabajo expositivo busca familiarizar al lector con la teoría, bien conocida, sobre   la 

convergencia de familias de funciones analíticas, el estudio de las familias normales, teoría que aparece 

en la mayoría de los textos clásicos de Análisis Complejo.  El objetivo de este compendio es presentar 

un capítulo con conocimientos básicos en Topología y Análisis Complejo, como herramientas, para 

explorar algunos resultados importantes relacionados con   la teoría de Montel y el Teorema Grande de 

Picard.  El trabajo contiene algunas consecuencias de los teoremas antes mencionados y varios 

ejemplos de sus aplicaciones, los cuales contribuyen a fortalecer en los lectores los antecedentes para el 

estudio de la Dinámica Holomorfa.  

 

Teorema de Picard, Teoría de Montel, Funciones Analíticas 

 

Abstract  

 

The present expository work sought to familiarize the reader with a well-known theory of the 

convergence of families of analytic functions, the study of normal families, theory that appears in most 

of the classical texts in Complex Analysis.  The objective of this compendium is to present a chapter   

with basic knowledge on Topology and Complex Analysis, as tools, in order to explore some important 

results related to   Montel´s Theory and Picard´s Great Theorem. The work contains some of their 

consequences for analytic functions and several examples of their applications, which contributes to 

strengthen in the readers the background  to study Holomorphic Dynamics. 

 

Picard’s Great Theorem, Montel’s theory, Analytic Functions 

 

1.  Introduction 

 

Given a transcendental entire function    in the complex plane it is possible to study the composition of 

  n- times i.e.,            where infinity for these functions is the only essential singularity. The 

notion of normal families forms a central feature of iteration theory of transcendental entire functions, 

because it helps to compare the orbits   (z) of a given function  , under the iteration of    for different 

points z in the complex plane. In this expository document the reader will be able to identify the 

important results needed before going into the study of the iteration theory of transcendental entire 

functions. We deal with normal families and some interesting examples of it, also we give some results 

such as the Fundamental Normality Test which is essential to prove the Picard Great Theorem for 

analytic functions in a punctured disc around an essential singularity. We compare the Picard Great 

Theorem with Casorati-Weierestrass Property to see their differences. Also, we solve some problems to 

see how the results mentioned before are used in holomorphic dynamics.  

 

In Section 2 we state the Selection Theorem, the Vitali´s Theorem and the Hurwitz´ Theorem. 

Also, we introduce the concept of normal family for analytic functions and some examples of it. The 

main theorem in Section 2 is The Fundamental Normality Test. In Section 3 we state the Picard’s Great 

Theorem and some consequences for analytic functions.  Also, the Casorati-Weieretsrass Property is   

given. Finally, in Section 4 we mention some examples of these two theorems to the theory of 

holomorphic dynamics. 

 

2.  Normal Families 

 

In 1907 Paul Montel (1876-1975), a French a Mathematician, received his doctorate in Paris which was 

related to infinite sequences of both real and complex functions,  A few years later Montel worked in 

complex function theory  and introduced the theory of normal families, see [6] and [7].   Later his 

theory was extended to other kind of analytic functions.  

 

Normal families may be understood from different points of view, for instance hyperbolic 

geometry, Kleinian groups, functional analysis and holomorphic dynamics among others.  

 

We start by stating some well-known definitions from complex analysis which will be useful to 

define the concept of normal family. We refer to the reader to [1], [4], [5], [8]. 
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I.  A sequence {  }    of functions in a domain     converges uniformly to a function   if for 

all   > 0, there exists  N such that if n>N, then  |  (z)   (z)|     
 

II.  A sequence {  }    of functions in a domain     converges locally uniformly to a function   

if it converges uniformly in each compact subset     . 

 

III.  A set F of functions is locally uniformly bounded in a domain   if for each compact subset 

    , there is a constant  ( )    such that for all    F and for all    , |  (z)| ≤  ( ), 

this is, F is uniformly bounded on  . 

 

The following three theorems will be useful to determinate whether a family of functions is 

either normal or not. We state them without a proof, but they can be revised in [1]. We recall that an 

holomorphic function is an analytic function. 

 

­ Theorem 2.1. (Selection Theorem) Let   be a set of functions which are all analytic in a 

domain  .  If   is locally uniformly bounded in  , then there exists a sequence {  }      

which is locally uniformly convergent in  . 

 

Observe that the limit is analytic in  . The theorem also holds for uniformly bounded    where 

the uniform convergence is local. 

 

­ Theorem 2.2. (Vitali) Let  F be a set of analytic functions which is locally uniformly bounded in 

a domain  . If {  }      and {  }
   

   and such that 

                                           ,  and  if for  every  fixed  p  it is satisfied that 

        (  ) exists,  then  the  whole  sequence {  }    is  locally uniformly convergent in  . 

 

­ Theorem 2.3. (Hurwitz’s  Theorem)  If  a  sequence {  }    of  analytic  functions  converges 

locally uniformly to f  in a domain  , and if for all z   G  and   ( ) is not zero, then either      

is never 0 or      for all z in  . 

 

The theorems above tell us about the properties that a limit function possess when it is 

considered on the functional space  the uniform convergence. Now, we proceed to define the concept 

of normal family, which determinate the characteristics of the compact sets in . 

 

Normal Family. A family of analytic functions   on a domain     is normal in   if every 

sequence {  }      contains either (a) a subsequence converging uniformly to an analytic function 

ƒ= ∞ on every compact subset    , or (b) a sequence converging uniformly to ∞ on every compact 

subset    . 

 

The case (b) can also be expressed as follows: for all M > 0, there exists N such that for all n > 

M,  | (z)|     for all z    . An important result related to normal families is given as follows. 

 

­ Theorem 2.4. A family F of analytic functions is normal in a domain    if and only if F is 

normal at every point z0   G (this is in some neighborhood of z0). 

 

Proof.  The necessary condition is clear, so we will prove only the sufficiency condition. 

Choose a countable dense subset {  } of      where           and        .  

 

Let  (     ) be the largest disc about    in which F  is normal. Also let    be an exhaustion of 

  by the compact sets    {              d(z, ∂ ) ≥1/n }. As    is dense in    it is covered by 

all D(  ,   /2), where F is normal  in the disc        D(  ,   /2). So if we pick a finite sub-cover of each  

    we obtain a countable cover      
 D(  ,    /2) of  . 

 

   For any sequence, one can extract a convergent subsequence{   
} which converges uniformly 

in the disc converges uniformly in the D(  ,    /2) either to an analytic function f or to  ∞.  The 

sequence has in a subsequence {   

( )
}  which converges uniformly in both D(  ,    /2) and D(  ,    /2).  
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Inductively, we get the diagonal sequence {   

( )
} which converges uniformly in D(  ,    /2) 

either to an analytic function or to ∞. 

 

The distinction between ∞ and analytic functions splits the points      into two disjoint 

classes, say    and   both are open and together form G, i.e.,    =       As    is a domain it is 

connected, so either      or     . 

 

Now, if K is a compact subset of  , then we can find a finite open cover, say          
 

D(  ,    

/2) of  , where there is a subsequence converging either to an analytic function or to ∞.   

  

From Theorem 2.1, we get that if a set F  of analytic functions in a domain   is locally 

uniformly bounded in     then F  is a normal family. The following example illustrates it. 

 

Example 1. If   {                            }  is  locally uniformly bounded in  ,  then 

so is    {      } where   denotes the derivate function of     
 

Solution. By using Cauchy’s formula for derivatives of an  analytic function  we have: 

 

 ( )(z)  
  

  i
 ∫

 ( )

(   )    
 ,                                        (1) 

 

Where C is a closed curve.  

 

Where 

 

| ( )(z)|  |
 

  i
∫

 ( )

(   )  
|  

 

  
∫ |

 ( )

(   ) 
| | w|

 
.                (2) 

 

Since    is locally uniformly bounded, we have that for all compact   = D(α, R)    , there 

exists an M ( ) < ∞ such that for all     F  and for all z    , |  (z)| ≤ M ( ). 

So for all z   D(α, R/2) and for     F we have: 

 

| ( )(z)|   
 

  
∫ |

 ( )

(   ) 
| |  |

 
 

 

  

  ( )

  
     

  ( )

 
 .                                 (3)  

 

Hence    is also locally uniformly bounded, therefore a normal family.    

 

Observation. Ahlfors in [1] mentioned that it not true that the derivatives of a normal family 

form a normal family. Consider the family of functions  n(z) = n(z
2
 − n) in the whole plane. This 

family is normal, for it is clear that  n(z) → ∞ uniformly on every compact set. Nevertheless, the 

derivatives   
( )

(z)      do not form a normal family, since they  satisfy that   
( )(z)     if  z    

and     
( )(z)     for  z = 0. 

  

In what follows we consider an example which shows that normality can depend on the chosen 

domain. 

 

Example 2.  Let  F ={  (z)   z    }  For any sequence {  }       ( )    and if          

z       (z) → ∞. So if we choose our domain   to be an open disc containing the origin, i.e., D(0,1), 

then F  is not normal in this domain. But, if we consider the domain                            = {z     : |z| > 

1}, then every sequence {   }    contains a subsequence converging uniformly to ∞ on every compact 

subset of  .   

 

The following example shows that a family of analytic functions is normal if it omits an open 

subset of  . 

 

Example 3.  If  {        anal t    n a    a n      u   t at | ( )   |      
       e     e      }, show that   is  normal in   . 
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Solution. We know that the family  

 

  {   ( )  
 

 ( )  
 w t     }                                         (4) 

 

Is normal in  , since | ( )|  
 

 
, for       

 

We must show that   is normal in  . Consider the sequence {  }      and its corresponding 

sequence {  }     which has a subsequence {   
}. This subsequence {   

} has a corresponding 

{   
} (we do not know anything about it yet). By using Hurwitz’s Theorem, we have that z    and so 

either (i) h(z) is not identically zero in   or (ii) h(z) = 0 in  . 

 

Case (i). h(z) is not zero in  . Since     ( )    
 

 ( )
  we get that: 

 

 ( )     
( )  

 

 ( )
 

 

   
( )

 
   

( )  ( )

 ( )   
( )

.                           (5) 

 

Let       be compact. As    
   there exists for all   > 0 some natural number N so that for 

all      and      |   
( )   ( )|    and thus we obtain  that   

 

 | ( )     
( )|  

 

 (   )
,                  (6)  

 

For nk > N and z    . Thus, for z in     ( )   ,  so we get that   is normal in  . 

 

Case (ii). Consider  ( )       in  , then |   
 | <     for sufficiently large nk (depends of  ) and 

z    , where   is a compact subset of  . Hence, for    small enough. Thus  {  }         converges 

uniformly to ∞ on   ,  thus   we have that      is normal in  .  

 

The following result gives a sharper result than Example 3, in the literature it is known as the 

Montel’s three omitted values theorem. 

 

­ Theorem 2.5. (Fundamental Normality Test) Let   be a family of analytic functions on a 

domain G    which omits two fixed values a and b in  . Then   is normal in G. 

 

Proof. Assume without loss of generality that a = 0 and b = 1. Fix some     and pick >0 so 

that D(z   )    . By considering the rescaled function  ( )   (    ) in D(0,1) we obtain   by 

using the sharp form of Schottky, see [8], so we obtain that   

 
| ( )|  | |                                                              (7) 

 

So, there exists a bound M (1, 1/2) > 0 such that | ( )|  | (  
 

 
)| for all   ̅ (   



 
) . On the 

other hand, if | (  )|     then |
 

 ( )
|  

 

 (
   

 
)
 for all    ̅ (   



 
) since 

 

 ( )
 omits 0 and 1. Thus,    

can be written as  follows: 

 

        {    | (  )|   } {    | (  )|   }                         (8) 

 

Where    is normal in  ̅ (   


 
) by the Selection Theorem and the definition of normal family  

   is normal by the same argument. Now, for any sequence {  }      we can choose a subsequence  

from either     or     such subsequence has in turn a locally uniformly convergent sequence, thus     is 

normal in  (   
 

 
) .  

 

Since this hold for any       then   is normal in   by Theorem 2.4.  

 

Theorem 2.5 in connection with Example 3 gives the following corollary. 
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­ Corollary 2.6. A family of analytic functions on some domain     which is not normal omits 

at most one finite point. 

 

3.  Picard´s   Great Theorem and Some Consequences for Analytic Functions 

 

In this section we proceed to give some definitions of   singularities of analytic functions and then we 

state  the Picard´s  Great Theorem. 

 

If f is not analytic in any disc D (a, r), where r > 0, we say that a  is an isolated singularity of  f, 

also a is called  a singular point. For functions we study the characteristics of a function on a 

neighborhood of a singular point by using Laurent’s series.  

 

Briefly speaking a Laurent’s series is a double series of the form ∑   (    )  
     where 

 

     
 

    
∫

 ( )

(    )    
                            (9)       

   

And 

 

   
 

    
∫

 ( )

(    )    
 .                          (10) 

 

Using Laurent’s series, we can classify a singular point a in terms of the quantity of the 

coefficients    , which can be an arduous labor for some functions. Thus, the following statements 

simplifies the situation: 

  

1. If f is bounded in some neighbourhood D (a, r) of a. In this case a is called a removable 

singularity. 

 

2. If  f (z) → ∞ as z → ∞, a is called a pole. 

 

3. If f is unbounded and does not converge to ∞ for z → ∞. In this case a is called an essential 

singularity. 

 

    Now, let f   be analytic in the punctured disc D (0, R) with the Laurent’s expansion. Let f  be an 

analytic function in the complex plane or the Riemann sphere. We say that w is an omitted value of f, if   

for every z we have f (z) − w = 0 has no solutions and w is a Picard exceptional value of f, if f (z) − w = 

0 has finite solutions. 

 

Observe that if w is an omitted value of  f,  then w is a Picard exceptional value of  f. 

 

Example 4. (i) The exponential map e
z
  has two omitted values,  zero and ∞ which are  also 

Picard exceptional values. 

 

(ii) The map e
z
/z has zero as an omitted value, so it is a Picard exceptional value, while 

∞ is as a Picard exceptional value but it is not an omitted value.  

 

From the above example in mind we can state the following result. 

 

­ Theorem 3.1. (Picard Great Theorem) Let f be analytic in the punctured disc D (z0, R)  where 

z0 is an essential singularity of f. Then f attains every finite complex value, infinitely often in D 

(z0, R), with at most one possible exception. 

 

Proof. Assume that D = {0 < |z| < R} and suppose that there are two values a and b which are 

omitted by f in D. The family of functions    defined by     ( )   (
 

  
)      are analytic in the 

annulus     {
 

 
 | |   }  and do not assume the values a or b in A. Since   is normal in  , there is 

a subsequence {   
} converging uniformly  to   ̂ on the compact set {| |    

 

 
    }, where  ̂ is 

either an analytic function or equal to   in  . 
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If  ̂ is analytic, then its boundedness on | |    which implies that {   
} is uniformly bounded 

on | |      say |   
( )|    | |                 

 

Then,  

 

|   
( )|    | |  

 

  
 w e e                              (11) 

 

That is,    is bounded on a sequence of concentric circles converging to the origin. By the 

Maximum Modulus Theorem, | ( )|    in the region between any two circles. Therefore, 

 

|   
( )|      | |  

 

  
                         (12) 

 

Which contradicts the fact that   must be unbounded in any neighbourhood of an essential 

singularity. 

 

If   ̂= ∞ in A, again we obtain a contradiction, see [7] for a proof. Finally, if there are two 

values, say α, β which are attained only finitely often by     then in some sufficiently small deleted 

neighbourhood of the origin   would omit α, β and the result follows.   

 

We recall that transcendental entire functions are analytic in   and   is an essential singularity. 

Some examples are the exponential and the sine functions. From Picard Great Theorem it can be 

deduced the following result by putting        
 

­ Corollary 3.2. A transcendental entire function attains every finite complex value infinitely 

often, with at most one possible exception. 

 

An application of the theorem above is the following example. 

 

Example 5. Do there exist any non-constant entire functions f and g such that    

 

e
f(z)

 +e
g(z)

 = 1 for all    ?                                                                                                       (13)    

 

Solution. The answer is negative.   

 

Indeed, we know that e
f(z)

 f = 0 f= e
g(z)

 for any f (z) or g(z). So by Corollary 3.2 we have that e
f(z)

 

must again all other values in  , for instance if e
f(z)

 + e
g(z)

 = 1 is fulfilled by some f and g, then e
f(z)

  = 1 

− e
g(z)

. But since e
g(z)

 = 0 for z    , we obtain a contradiction.  

 

As we can see the example above is an immediate application of the Picard´s Great Theorem, 

moreover, we also in the same way can prove the following facts:  

 

1. If a meromorphic function on ℂ misses three values, then it is constant. 

 

2. If   is entire and one-to-one, then it is linear. 

 

3. If  , g are entire functions and  ′=( ), then   is linear or   is constant. 

 

4. If   is a Riemann sphere with   punctures, then for   ≥ 3 the universal covering space  ̃ of   is 

the upper-half plane.  

 

Based on the facts above and the definition of essential singularity it led us to wonder about the 

characteristics that such functions possess.  Casorati-Weierestrass proved independently the following 

property which established a fascinating behaviour of the essential singularity, see proof in [8].  

 

­ Theorem 3.3. (Casorati-Weierestrass Property) Let   be analytic in the punctured  disc 

 (   ), where a is an essential singularity of    Then for all w    , and any  constants    > 0, R 

> 0, we have | ( )   |    for some    (   )  
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  Observation: The Great Picard Theorem is a substantial strengthening of the Casorati- 

Weierestrass Property which describes the behaviour of a holomorphic functions near their essential 

singularities.  

 

Example 6. Observe that in the above theorem it is not claimed that   attains the value   
  t at     ( )    has at most one solution, i.e.,   is univalent. Show that  (z) = az + b, with a, b 

constants. 

 

Solution. Assume that     for some       
 

Then by the Open Mapping Theorem, the image of an open disc D (0,1) is open under   (as   is 

analytic there). So certainly, D ( (0), ρ)    (D (0, 1)) for some ρ > 0. Then for all z not in the disc D 

(0, 1) the function   never lie in the disc D(   (0), ρ).  Thus, in the neighbourhood 1 > |z| > ∞ of ∞, we 

have | f (z) – f (0) |     ρ.  Thus, by the converse of Theorem 3.3, ∞ is not an essential singularity of  . 

Our definitions on singularities hence tells us that the Laurent’s expansion of    must be of the form 
∑   z  

    since    is entire. Thus, we have a polynomial, and since   it is univalent, it must be of 

degree one. Therefore, f(z) = az + b with a, b constants.    

 

4.  Applications in Holomorphic Dynamics 

 

Montel’s theory of normal families is quite important in the iteration of analytic functions. Between 

1918 and 1920, two French mathematicians, Pierre Fatou (1878-1929) and Gaston Julia (1893-1978) 

obtained several results related to the iteration of rational functions of a single complex variable. Each 

of them based his approach on Montel’s theory of normal families. The main objects of the theory are 

the maximal domains of normality and its complement. In this section we will give some basic facts in 

iteration theory using some results of the previous sections. 

 

Given a transcendental entire function  , it is possible to study the sequence formed by its 

iterates denoted by                  an     , this is, the composition of    with itself n-

times. For this class of functions infinity is the only essential singularity. 

 

The following example shows how the results in Section 3 can be applied to iteration theory. 

 

Example 7. If  f and g are transcendental entire functions, then f ◦g = f (g) is a transcendental 

entire function. 

 

Solution. Take w = g(z) and look at f (w)=f (g(z))=v, where v is not a Picard value of f. Then by 

Theorem 3.1, there exists infinitely many solutions w1.w2, . . . , wn, . . . for this equation. Therefore, the 

equations g(z)=w1, g(z2) = w2, . . . g(z) = wn, . . . have infinitely many solutions, except for maybe one 

g(z) = wi. But still, this yields only have finitely many solutions and the composition of two 

transcendental entire functions is also a transcendental entire, we have shown that f ◦g is transcendental 

entire. 

 

We can use Example 7 n-times to show that if   is a transcendental entire function, then    is 

also a transcendental entire function.   

 

Given    a transcendental entire function we define orbits which are related to the iteration of an 

analytic function   . 

 

The forward orbit of a point z is O
+
(z) = {w: 

    (z) = w, for n    }. 

 

The backward orbit of a point z is O
−
(z) = {w: 

   (w) = z, for some n     }. 

 

The grand orbit of a point z is O(z) = O
+
(z)   O

−
(z). 

 

Also, we define  ( ) as the set of Fatou exceptional values of  , this is, points whose inverse 

orbit O
−
(z) is finite. 
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Example 8. The map   (z) = e
z
  has  Fatou exceptional values  zero and ∞ (both are also 

omitted values, see Example 4). 

 

If we add a pole in the function above the behaviour changes. 

 

 Example 9.  The map   (z) = − e
z
 + 1/z, has no omitted values, the Picard exceptional value is 

∞, but it is not a Fatou exceptional value since    ( ). Thus  ( )     
 

With the definition of normal family, see Section 2, it is possible to investigate two sets in the 

complex plane giving a transcendental entire function  : The Stable set ( Fatou set)  ( )  which is  

defined as the set of all points     such that the sequence of iterates {  }    forms a normal family 

in some neighbourhood of z. The Chaotic set (Julia set), denoted by  ( ) is the complement of the 

Fatou set. 

 

To prove some important properties of the two sets mentioned above, it is necessary the concept 

of normal family and some results of Complex Analysis which drives us to the subject of holomorphic 

dynamics. We recommend the reader to revised [2] and [3] for starting the subject in holomorphic 

dynamics for rational and transcendental entire functions. 

 

5.  Research Method 

 

This paper presents two main results used in the iteration of holomorphic functions, based on classical 

textbooks used in basic courses of Complex Analysis, which open a window to the readers to enter in 

this magnificent and depth area of Complex Dynamics. 

 

6.  Results 

 

Montel’s criterion and Picard’s Great Theorem are depth results of Complex Analysis which are 

equivalent. This equivalence is a bridge between compacity in the space of holomorphic functions and 

the behavior of a holomorphic function around an essential singularity. Moreover, the results stated in 

this chapter can be used as model in different areas such as Kleinian groups and   iteration of 

holomorphic functions.  In this document we try to explain some important concepts in a simplified an 

easier way to start the study the area of  Holomorphic Dynamics. 
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