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Abstract 

 

The present expository work sought to familiarize the reader with a well-known geometrical object 

obtained as the recursive application of the solution of the Apollonius’ problem known as the Apollonian 

gasket. This object appears in Geometry, but also in other branches of  mathematics such as Continuum 

Topology and Kleinian Groups. The work contains some properties of this object, the statement and 

partial solution of the famous Apollonius’ problem 

 

Apollonius’ Problem, Apollonian Gasket, Continuum 

 

1. Introduction 

 

In the third century B.C., Apollonius of  Perga wrote two books on Contacts. Since no copy of Apollonius' 

Contacts has survived the ages, Pappus of Alexandria deserves credit for eternally linking Apollonius' 

name with the tangents problem.  

 

  The tangency problem is well known, however, and unlike many of the classical Greek geometric 

construction problems, this one has a solution: given three geometric objects, each of which may be either 

a point, a line, or a circle, under what conditions is possible to construct a circle which passes through 

each of the points and touches the given lines and circles. 

 

  Since the conditions of the problem allow for any combination of circles, lines, and points, this 

rises to ten possible cases.  As Coxeter (1968) mentions Euclid's Elements already cover the most 

straightforward (three points and three lines). Apollonius treated these two cases together with these other 

six (two points and a line; two lines and a point; two points and a circle; two circles and a point, two 

circles and a line; a point, a line, and a circle) in Book I of the Tangences, and the two remaining cases 

(two straight lines and a circumference, and three circumferences) in Book II of the Tangences. Although 

unfortunately, these books were lost through Pappus of Alexandria (4th century A.D.). It is known that 

Apollonius solved the first nine, and today it is believed that Isaac Newton was the first mathematician 

who solved the problem of finding the circle tangent to three other circles through the rule and the 

compass. 

 

  A particular case of Apollonius' problem is known today as the three coins problem, or kissing 

coins problem. In this variant, the three circles of possibly different radii are taken to be mutually tangent. 

There are two solutions to this particular case of Apollonius' problem: a small circle where all three given 

circles are externally tangent and a large circle where the three given circles are internally tangent. In 

1643 Renè Descartes sent a letter to Princess Elisabeth of Bohemia in which he provided a solution to 

this particular case of Apollonius' problem, and his solution became known as Descartes' circle theorem. 

 

  In the present expository work, we study the solution to Apollonius' problem with different 

Geometry approaches such as the Euclidean, Analytic, Conformal and Geometry of the invariants. 

Section 1 deals with the solution to Apollonius' problem. 

 

  In section 2, we study the famous Descartes' four-circle theorem. In section 3, we explore the 

existence of the apollonian Gasket through Conformal Geometry and finally, in Section 4, we study the 

Apollonian Gasket through the consistent geometry approach. 

 

2.  Solution to Apollonius' Problem 

 

Apollonius’ problem requires to construct one or more circles tangent to three given objects in a plane, 

which may be  either circles, points, or lines. This gives rise to ten types of Apollonius' problem, one 

corresponding to each combination of circles, lines, and points, which may be labeled with three letters, 

either C, L, or P, to denote whether the given elements are a circle, line, or point, respectively ( see Table 

1). As an example, the type of Apollonius problem with a given circle, line, and point is denoted as CLP. 
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Table 1: Ten Types of Apollonius' Problem 

Case Code Given Elements Solution Example 

(solution in pink; given objects in 

black) 

1 PPP three points The problem is reduced to 

constructing a circle that 

contains them 

 

 
 

2 LPP one line and two points The problem is reduced to 

constructing a circle 

tangent to the line and 

containing the two points 

 

 
 

3 LLP two lines and a point The problem is reduced to 

constructing a circle that is 

tangent to the two lines 

and contains the point 

 

 
 

4 CPP one circle and two points The problem is reduced to 

constructing a circle that 

contains the two points 

and is tangent to the given 

circle 

 

 
 

5 LLL three lines The problem is reduced to 

constructing a circle that is 

tangent to the three lines 

 

 
 

6 CLP one circle, one line, and a 

point 

The problem is reduced to 

constructing a circle that 

passes through the point 

and is tangent to the line 

and the given circle 
 

7 CCP two circles and a point The problem is reduced to 

constructing a circle that 

contains the point and is 

tangent to the two given 

circles 

 

 
 

8 CLL one circle and two lines The problem is reduced to 

constructing a circle that is 

tangent to the lines and to 

the given circle 

 

 
 

9 CCL two circles and a line The problem is reduced to 

constructing a circle that is 

tangent to the line and to 

the two given circles 

 

 
 

10 CCC three circles (the classic 

problem) 

Construct a circle that is 

tangent to three given 

circles 

 

 
 

 

  For the solution of the problem we need to consider the configuration of the given objects, i.e., 

the position in which the objects are situated in the plane lo which arises to the number of solutions of 

the problem for each case, which makes this problem more interesting. In our case we will give the 

constructions for two cases: Cases 8 and 10 use rule and compass. 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/File:Apollonius_PPP_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_LPP_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_LLP_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_CPP_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_LLL_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_CLP_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_CCP_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_CLL_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_CCL_black.svg
https://en.wikipedia.org/wiki/File:Apollonius_CCC_black.svg
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Case 8: Given two lines and a circle, we must construct a circle that is tangent to the lines and to 

the given circle. 

 

Construction (step by step, see Figure 1): 

 

Configuration 1: When the lines are parallel, and the circumference is tangent to the two lines. 

 

Configuration 2: When the circumference is between two straight lines L and M 

 

1. Determine the radius of the given circle O. 

 

2. Draw parallels to each side of the line L, at a distance equal to the radius of the circumference. 

 

3. Draw the bisector of the angle formed by the lines L and M. 

 

4. Find the symmetrical point of the center O with respect to the bisector. (Point O'). 

 

5. Draw the line OO'. 

 

6. Mark the intersection between the line OO' and the parallel line L1. (point M). 

 

7. From M, draw tangents to the circle of diameter OO'. Mark the points of tangency D and E. 

 

8. Draw the circle with center at M and radius MD. 

 

9. Find the intersections of the parallel L1 with the circle CM with center M. 

 

10. Draw the perpendiculars to the parallel L1 through points A and B. 

 

11. Find the intersections of the perpendiculars found with the bisector. 

 

12. The points P and Q are the centers of the circles sought. Draw circles with centers at P and Q tangent 

to lines L and M. 

 

13. If these steps are followed for the parallel line L2, two other circles are obtained. 

 

Figure 1 Case 8 Configuración 2 
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Case 10: Given three circles, we must construct a circle that is tangent to the three given 

circles. 

 

Construction with steps ( see Figure2): 
 

1. Draw two auxiliary circles with center at O2 and O3 and radius r2 r1 and r3 r2 respectively. Aux1, 

Aux2. 

 

2. Unite the centers O2 and O3 and find their intersection with the circles Aux1, Aux2. (R, S). 

 

3. Draw a segment perpendicular to center O2 and center O3. 

 

4. Find the intersections of the segments with their respective auxiliary circles. 

 

5. Join the intersections, find the point of intersection (M ) this will be the center of inversion. 

 

6. Join point M with center O1 (MO1). 

 

7. Join center O1 with points R and S. 

 

8. Draw the circumference that passes through R, S, O1 (O4). 

 

9. Find the point of intersection of O4 with the line MO1 (O1′). 

 

10. Draw a line that passes through the points of intersection of the circumference O4 and the 

circumference Aux2. 

 

11. Find the intersection of the previous line with line MO1. 

 

12. Draw the PO2 segment. 

 

13. Find the midpoint of the segment PO2 (h). 

 

14. Draw an arc of circumference with center at h and radius hO2. 

 

15. Find the intersection points of the arc with the circumference aux2 (T 1, T 2). 

 

16. We draw the perpendicular bisector of the segment O1O1′. 

 

17. Join the points T 1, T 2 with the point O2 and find the points of intersection with the 

perpendicular bisector of O1O1′ (O5, O6). 

 

18. Join the points O5, O6 with the initially given centers O1, O2, O3 and find the points of 

intersection T 3, T 4, T 5, T 6, T 7, T 8 (points of tangency). 

 

19. Draw the circles with center at O5, O6 and radius towards one of their tangency points. 

 

20. Those circles are the solutions to the problem. 
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Figure 2 Steps for Case 10 

 

 
 

Figure 3 Solution for a configuration for Case 10 

 

 
 

3.  Descartes’ circle theorem 

 

In 1643, Descartes wrote to Princess Elizabeth of Bohemia (1618-1680) stating formula he had 

established on the radii of the tangent circles, and for which she independently provided a proof. The 

radii are related by the following formula.  

 

Theorem 2.1 (Descartes-Princess Elizabeth).  Assume that the radii of the original circles are  𝑎, 𝑏, 𝑐, >
0 and the fourth mutually tangent circle has radius d > 0,  then 

 

2 (
1

𝑎2
+

1

𝑏2
+

1

𝑐2
+

1

𝑑2) = (
1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
)

2
.   
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  Proof. Suppose four circles lying in a plane, such that any two of them touch each other externally 

(meaning that in each pair of touching circles each center is external to the other circle of the pair). If the 

centres of a pair are P, Q, then the point of tangency lies on the line PQ, and the length PQ is equal to the 

sum of the radii. So, if P, Q, R, S are the centers of the four circles, and a, b, c, d are their radii, we have 

the six  following equations: 

 

𝑷𝑸 = 𝒂 + 𝒃      𝑸𝑹 = 𝒃 + 𝒄        𝑹𝑷 = 𝒄 + 𝒂 

 

𝑷𝑺 = 𝒂 + 𝒅      𝑸𝑺 = 𝒃 + 𝒅         𝑹𝑺 = 𝒄 + 𝒅 

 
Now, suppose that S is inside the triangle PQR and let 

 

θ = 𝑎𝑛𝑔𝑙𝑒 𝑃𝑆𝑄       ϕ = 𝑎𝑛𝑔𝑙𝑒 𝑄𝑆𝑅     ψ = 𝑎𝑛𝑔𝑙𝑒 𝑅𝑆𝑃, 

 

then  

 

θ + ϕ + ψ = 2π  
 

Applaying to the triangle PSQ the cosine rule we have 

 

(𝑎 + 𝑏)2 = (𝑎 + 𝑑)2 + (𝑏 + 𝑑)2 − 2(𝑎 + 𝑑)(𝑏 + 𝑑) 𝑐𝑜𝑠(θ)  
 

Therefore  

 

𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎) =
2𝑑2+2𝑎𝑑+2𝑏𝑑−2𝑎𝑏

2(𝑎+𝑏)(𝑏+𝑑)
=

𝐴𝐵−2𝑎𝑏

𝐴𝐵
= 1 −

2𝑎𝑏

𝐴𝐵
  

 

where we have written A for a + d and B for b + d. Hence 

 

𝑠 = 𝑠𝑖𝑛(θ/2) = √
1−𝑐𝑜𝑠(θ)

2
= √

𝑎𝑏

𝐴𝐵
= √αβ  

 

where we have written α for a/A and β for b/B.  As before we obtain: 

 

𝑡 = 𝑠𝑖𝑛(ϕ/2) = √
𝑏𝑐

𝐵𝐶
= √βγ  

 

𝑢 = 𝑠𝑖𝑛(ψ/2) = √
𝑐𝑎

𝐶𝐴
= √γα  

 

where we have also set C = c + d and γ = c/C. 

 

Now,  since  the angles θ/2, φ/2 and ψ/2 add up to π , this implies that  

 

𝑠 = 𝑠𝑖𝑛(θ/2) = 𝑠𝑖𝑛(π − ϕ/2 − ψ/2) = 𝑠𝑖𝑛 (
ϕ+ψ

2
) = 𝑡√1 − 𝑢2 + 𝑢√1 − 𝑡2  

 

This relates s, t and u,  but the equation is difficult to follow. It can be improved by getting rid of the 

square roots. Thus, squaring both sides of the equation and simplifying we obtain that 

 

s4 + t4 + u4 − 2(s2t2 + t2u2) + 4s2t2u2 = 0  
 

This is much better, being nicely symmetrical between s, t and u. We can get that the equation becomes 

 

2(𝑠4 + 𝑡4 + 𝑢4) − (𝑠2 + 𝑡2 + 𝑢2)2 + 4𝑠2𝑡2𝑢2 = 0  
 

Substituting the expressions for s, t and u derived from the cosine rule, we obtain 

 

2(α2β2 + β2γ2 + γ2α2) − (αβ + βγ + γα)2 + 4α2β2γ2 = 0  



133 
 

 

Dividing through by α2β2γ2, 

 

(
1

γ
+

1

α
+

1

β
)

2

= 2 (
1

γ2 +
1

α2 +
1

β2) + 4. 

 

Now 

 
1

α
=

𝐴

𝑎
=

𝑎+𝑑

𝑎
= 1 +

𝑑

𝑎
  

1

β
= 1 +

𝑑

𝑏
  

1

γ
= 1 +

𝑑

𝑐
;  

 

and so, writing  for d/a + d/b + d/c,  for (d/a)² + (d/b)² + (d/c)², the  equation becomes 

 

(3 + σ)2 = 2(3 + 2σ + τ) + 4.  

 

Therefore, 

 

2τ = −1 + 2σ + σ2 = (σ + 1)2 − 2.  

 

And 

 

2(τ + 1) = (σ + 1)2  
 

Thus, 

 

2 (1 +
𝑑2

𝑎2 +
𝑑2

𝑏2 +
𝑑2

𝑐2) = (1 +
𝑑

𝑎
+

𝑑

𝑏
+

𝑑

𝑐
)

2

.  

 

Dividing through by d², we get 

 

2 (
1

𝑑2
+

1

𝑎2
+

1

𝑏2
+

1

𝑐2
) = (

1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
)

2

.  

 

and we are done.    

 

  An immediate consequence of Descartes' circle theorem is the following: given the curvature of 

three mutually tangent circles, C1, C2 and C3 we can solve for the curvatures of the two circles that are 

mutually tangent to the three original circles. From this new collection of four mutually tangent circles, 

we can arbitrarily choose three of them and solve for the curvature of two new circles that are mutually 

tangent to this selection of three circles, these are called Apollonian circles. Adding the two Apollonian 

circles C4 and C5 to the original three, now we have five circles. 

 

  Take one of the two Apollonian circles, say C4. It is tangent to C1 and C2, so the triplet of circles 

C4, C1 and C2 has its own two Apollonian circles. We already know one of these, it is  C3, but the other 

one is a new circle, say C6. 

 

  Similarly, we can construct another new circle C7 that is tangent to C4, C2 and C3, and another 

circle C8 from C4, C3 and C1. This gives us 3 new circles. We can build another three new circles from 

$C_5,$ giving six new circles in total. Together with the circles C1 to C5, it gives a total of 11 circles. 

 

  Continuing the construction stage by stage in this way, we can add 23n new circles at stage n. 

The sizes of the new circles are determined by Descartes' theorem, the limit set is called Apollonian 

Gasket or Apollonian packing as Leibniz named it, who was the first to carry out the construction, see 

Figure 3. 

 

 

 



134 
 

 

Figure 3 Apollonian Gasket 

 

 
 

4. Apollonian Gasket and Möbius transformations 

 

In this section we will construct the Apollonian gasket using Conformal Geometry through Möbius 

transformations. 

 

A Möbius transformation of the complex plane is a rational function of the form  

 

𝑇(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
.  

 

With a, b, c, d  complex numbers. Non-identity Möbius transformations are in generall classified 

into four types; parabolic, elliptic, hyperbolic and loxodromic, with the hyperbolic being a subclass of 

the loxodromic.  The classification has both algebraic and geometric significance. The four types can be 

distinguished by looking at the trace,  denoted by tr T= a+ d.  In  Table 2 there is a  resume  of the the 

general classification of the Möbius transformations.  

 

Table 2 Classification of Möbius transformations 

 
Transformation Trace squared Multipliers Class representative 

Circular  σ = 0  k = −1  [
𝑖 0
0 −𝑖

]   z ↦ −z 

 

Elliptic  0 ≤ σ < 4  |k| = 1 
 [𝑒𝑖𝜃/2 0

0 𝑒−𝑖𝜃/2
] 

 z ↦  𝑒𝑖𝜃  

Parabolic  σ = 4  k = 1  [
1 𝑎
0 1

]   z ↦ z + a 

 

Hyperbolic  4 < σ < ∞  𝑘 ∈ 𝑅+ 

𝑘 = 𝑒±𝜃 ≠ 1 
[𝑒𝜃/2 0

0 𝑒𝜃/2
] 

 z ↦  𝑒𝜃𝑧 

Loxodromic  𝜎 ∈ 𝐶 ∖ [0,4] 
 

|𝑘| ≠ 1 

𝑘 = 𝜆2, 𝜆−2 
  [

𝜆 0
0 𝜆−1]   z ↦ kz 

 

 

Theorem 4.1.  There exists a unique Apollonian Gasket. 

 

Proof. Consider three circles with equal radii 𝑟 and centers at cubic roots of unity: 1, ω,ω2. Label the 

circles 𝑋1, 𝑋2, 𝑋3 in counterclockwise order starting with the one whose center is at 1. We seek a fourth 

circle 𝑋0 and three Möbius maps 𝑇1, 𝑇2, 𝑇3 such that: 

 

𝑇𝑖(𝑋𝑗) = 𝑋𝑗, 𝑗 ≠ 𝑖, 𝑖, 𝑗 = 1,2,3  

 

𝑇𝑖(𝑋𝑖) = 𝑋0  
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𝑇2 = 𝑅𝑇1𝑅−1  
 

 𝑇3 = 𝑅−1𝑇𝑅,    

 

where 𝑅 is a rotation of 𝐻 around the origin. It follows that 𝑋0 will have center at 0 because it is invariant 

under 𝑅. 
 

One can construct 𝑇1 as a composition: 𝑇 = 𝑆𝐽,  where 𝑆 is the reflection through the axis of 

symmetry of 𝑋2and 𝑋3and J is the inversion with respect to a circle orthogonal to 𝑋2 and 𝑋3. Moreover,  

 

𝑇1(𝑧) =
𝐼−1

2

2𝑧−𝐼

𝑧+𝐼
.  

 

The fixed points 𝑓 and 𝑓∗of  𝑇1are the points of intersection of the inversion circle J with the axis 

of symmetry of  𝑋2 and 𝑋3.  Moreover, 𝑓 = −
1

2
+ 𝑖𝛽 where 𝛽 = √

3

4
− 𝑟2 =

1

2

sin 𝛼

√cos2 𝛼−2/3
. 

 

The angle 𝛼 is defined by cos 𝛼 =
1

2
√

9−8𝑟2

3(1−𝑟2)
. 

 

The radius 𝜌0 of 𝑋0 is given by 𝜌0 =
2𝑟2−3+√9−8𝑟2

2𝑟
. 

 

Consider 𝑋∞ ≔ 𝑇1
−1(𝑋1) and  since   𝑇1 is Möbius transformation and 𝑋1 is invariant under 𝑇1,  

it follows that 𝑋∞ is a circle. We can reduce that its radius is given by  𝜌∞ =
√cos 2𝛼+1√3 cos 2𝛼−1+√3 cos 2𝛼

√2(2 cos 2𝛼−1)(3 cos 2𝛼−1)
  

and  center 0. Therefore, 𝑋∞ = 𝑇𝑖
−1(𝑋𝑖), 𝑖 = 1,2,3 and 𝑇1 = (

2(𝐼−1)

√6𝐼(𝐼−1)

−𝐼(𝐼−1)

√6𝐼(𝐼−1)

2

√6𝐼(𝐼−1)

2𝐼

√6𝐼(𝐼−1)

)  

which is: 

 

(i) parabolic if and only if 𝑟2 =
3

4
 ; 

(ii) elliptic if 𝑟2 ≥
9

8
 𝑜 𝑟2 <

3

4
. 

 

For further details of this affirnation the reader can consult Lagarias J., Mallows C. & Wilks A. 

(2002). Thus, when 𝑇1 is a parabolic transformation, we obtain that 𝑋0 and 𝑋∞ are the desired circles. 

Furthermore, if we consider any other triad of circles, it is possible to construct a Möbius transformation 

that sends the three given circles into the given circles. Therefore, the Apollonius Gasket is unique.  

 

5. Apollonian Gasket and Kleinian groups 

 

To establish how the Apollonian Gasket is related to Kleinian Groups first we remind some basic notions 

of group theory.  

 

  Recall that SL(2, C) is a topological group with the Euclidean metric topology. Hence, we 

obtain that  PSL(2, C) = SL(2, C)\{±I}, where {±I} is a normal subgroup of SL(2, C), is a topological 

group with the quotient topology.   

 

Suppose Γ is a group acting on a set X and let x ∈ X. We define the following:  

 

(i) The stabilizer of x in Γ is the subgroup Γx = {γ ∈ Γ: γx = x}.  

(ii) The Γ-orbit through x is the subset Γx = {γx: γ ∈ Γ} of X.  

(iii) The orbit space of Γ on X is the set of all Γ-orbits X/Γ = {Γx: x ∈ X}.  

(iv) A subset U of X is called Γ-invariant if γU = U for all γ ∈ Γ. 
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5.1 Discrete subgroups 

 

A topological group is discrete if and only if all its elements are open. 
 

There are other useful ways to determine discreteness. For example, if the identity element {1} is 

open in Γ then γ1 = γ is open for all γ ∈ Γ and so Γ is discrete. 

 

A Kleinian group is a discrete subgroup of PSL (2, C). 

 

The set of accumulation points of Γp in C ∪ ∞ is called the limit set of Γ, and usually 

denoted Λ(Γ). The complement Ω(Γ) ≔ (C ∪ ∞)∖ (Λ(Γ)) is called the domain of discontinuity or 

the ordinary set or the regular set. 
 

Theorem 4.1. Let Γ be a Kleinian group. Then 

 

(i) The limit set Λ(Γ) is the smallest non-empty, closed and Γ-invariant set in C ∪ ∞.  

(ii)  The ordinary set Ω(Γ) is open, Γ-invariant in C ∪ ∞.  

(iii)  Let P denote the set of the fixed points of no elliptic elements of Γ, then Λ(Γ) = P. 

(iv) The limit set Λ(Γ) is uncountable.  

(v) If Ω(Γ) ≠ ∅,  then Ω(Γ) is dense in C ∪ ∞ and Λ(Γ) is nowhere dense in C ∪ ∞. 
 

5.2 Apollonian group 

 

Let 𝒜 denote an Apollonian gasket. Then, the residual set of 𝒜 is defined by  
 

Λ(𝒜) ≔∪𝐶∈𝐴 𝐶.  
 

Equivalently, if we take the complement in 𝐶 ∪ ∞.  of the interiors of all circles in 𝒜, we are left 

with the residual set Λ(𝒜). 

 

Let us start with the Descartes configuration 𝒟0 = {𝐶1, 𝐶2, 𝐶3, 𝐶4} of an Apollonian gasket 𝒜. 

Consider the group of Möbius transformations 𝑆 =< 𝑖1, 𝑖2, 𝑖3, 𝑖4 >  acting on C ∪ ∞,   where 𝑖𝑘 is defined 

as an inversion with respect to the circle 𝐶𝑘
~ that passes through the tangency points of the circles 𝐶𝑙,  for  

𝑙 ≠ 𝑘. In other words, each inversion 𝑖𝑘 fixes three of the initial circles in 𝒟0 (not pointwise) and acts 

reciprocally on the two tangent circles to those three. The set of the circles 𝐶𝑘
~ is called the dual Descartes 

configuration. 

 

Notice that 𝑆 leaves the gasket 𝒜  invariant and there are four 𝑆-orbits of circles in 𝒜. Hence, 

the group 𝑆 generates the whole packing 𝒜 through these inversions and the limit set Λ(𝑆) is equal to 

the residual set Λ(𝒜) of A. For this reason, the group S has been named the Apollonian group. 

 

If we take the circle 𝐶1 of the Descartes configuration 𝒟0 to be the unit circle, we can then easily 

calculate the analytic expression of the 𝑖𝑘
′ 𝑠. The general expression of an inversion in a circle with radius 

𝑟 and center 𝑤 is given by 

 

𝑖(𝑧) =
𝑤𝑧+𝑟2−𝑤𝑤

𝑧−𝑤
.  

 

 Then, the generators of the Apollonian group are 
 

𝑖1(𝑧) =
𝑧

−4𝑖𝑧+1
, 𝑖2 = 𝑧  

 

𝑖3(𝑧) =
(1+𝑖)𝑧−1

𝑧−1+𝑖
, 𝑖4(𝑧) =

(−1+𝑖)𝑧−1

𝑧+1+𝑖
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The 𝑖𝑘
′ 𝑠 are conformal, orientation-reversing maps. However, we can rewrite them as 

compositions of orientation-preserving maps, that is elements of PSL(2, C), and the complex conjugation 

map j. So,  

 

𝑖𝑘 = 𝛼𝑘 ◦ 𝑗,   

 
where the 𝛼𝑘

′ 𝑠 are represented by the following matrices, 

  

α1 = [
1 0

−4𝑖 1
] , α2 = [

1 0
0 1

] , α3 = [
1 + 𝑖 −1

1 −1 + 𝑖
] , α4 = [

−1 + 𝑖 −1
1 1 + 𝑖

].   

 

Which are parabolic Möbius transformations. 

 

6. Conclusions 

 

The Apollonian Gasket is a fascinating geometric object that was constructed by iteration using 

Descartes’s circle theorem. In this work was exposed the solution of Apollonius’ problem from the 

perspective of the Greek school to the perspective of Felix Klein, that is, from the construction with ruler 

and compass to a topological categorization of the Apollonian Gasket.  

 

We also know that by studying the recursion of the Apollonian problem we obtain the Apollonian 

Gasket which is a geometric object that can be constructed computationally; and in which, without a 

doubt, it is possible to appreciate the strength of the geometric study through complex functions. 

 

The Apollonian sieve is a fractal structure of great interest to many mathematicians, who using 

Dynamical Systems, Number Theory, Measurement Theory and Dimension Theory tools know that: 

 

(i) The Hausdorff dimension of Apollonian Gasket is bounded. 

(ii) There exists a rational function whose Julia set is homeomorphic to the Sieve of Apollonius. 
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