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Abstract 

 

Producers not only harvest products but useful information to develop optimization models to 

increase efficiency in crop management. The problem we face is the prediction of tomato yields in 

two greenhouses located at Humboldt University of Berlin, one is a conventional high technology 

greenhouse and the other is a semiclosed greenhouse, both have the same area and equipment. Yield 

was recorded  for 26 weeks in both greenhouses. Because of the small data pattern,   a  dynamic 

artificial neural networks (DANN) was implemented, which is generally more adequate than static 

networks, because they learn sequential or time varying patterns.  In particular,  the Layered Digital 

Dynamic Network (LDDN) was used where solar radiation, transpiration and CO2 fixation  were 

the input variables for predicting yield.  The best LDDN model was chosen on the basis of a 

suitable architecture (i.e. a minimum number of input neurons connected to a hidden layer) 

combined with a high R, a low mean absolute error (MAE). The model explained the weekly 

fluctuations of tomato yields based on external conditions and the stage of the plant. The sensitivity 

analysis show that the most influencing variable in prediction of tomato yields was CO2 enrichment. 

The results from the model,  could be  a  valuable information for making decisions on climate and 

crop management and in synchronizing crop production with market demands. 

 

12 Introduction 

 

The advances and sofistication of the control systems in agriculture has generated information 

useful for producers. Most of the variables could be correlated directly or indirectly to yield so 

regression or correlation analysis cannot be used. According to Ehret et al.(2011) the fisiological 

information can provide complementary data specially if this data is integrated in computacional 

models. An efective way for modelling yields of different crops has been the Artificial Neural 

Networks. 

 

The  non-linear modeling approach based on the Artificial Intelligence (AI) techniques has 

received considerable attention from the hydrologists in the last two decades (Boucher et al., 2010; 

de Vos and Rientjes, 2005; Toth et al., 2000; Weigend et al., 1995; Xiong et al., 2004,  El-Shafie et 

al. , 2012), as well as in agriculture.  Topuz (2010) applied Artificial Neural Networks (ANN) in 

predicting moisture content of agricultural products. The author mentioned that the recent advances 

in computer technology and parallel processing have made the use of ANN more economically 

feasible;  ANN is composed of nets of non-linear basis functions, it has the ability to evolve good 

process models from example data and require little or no a priori knowledge of the task to be 

performed; ANN has the potential to solve certain types of complex problems that have not been 

satisfactorily handled by more traditional methods. Also, ANN have been effective in modelling 

yield of different crops (Masters, 1993).  

 

The  design of a neural  network  and  selection of the proper  dataset  for  a  given  problem, 

it is not an easy task. First, a proper selection of the input data to explain the phenomenum at hand 

and the training dataset is crucial and  leads to the success of the neural network prediction. Larger 

networks require large training datasets.  However,  some problems arise like overfitting.  If we 

want an effective   neural network  for prediction purposes, the training dataset must be complete 

enough in such a way  that every  group  must  be  represented, for the particular case of yield 

prediction, each group  represents the stage of the productive time for tomato crop . Each class is 

characterized by a  statistical variation, so the  data presented to a neural  network must  be   the  

entire  range of data with noise  included. 
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Another important issue is if the data set need any transformations.  Besides, the neural 

network architecture, number of layers , number of hidden nodes, the transfer functions and the 

training time are some of the factors to be considered in any Neural Network Model. 

 

Transfer  functions are very important because they  contain adaptive parameters that are 

optimized, commonly they have  limits between   -1  to +1.   The most widespread transfer 

functions are  the   sigmoid,  the hyperbolic tangent and pure linear functions. The first two  are 

continuous,  non linear function whose domain is the real number set, whose first derivative is 

always positive, and whose range is  bounded.  The sigmoid function never reaches its theoretical 

maximum and minimum;  however the  hyperbolic  tangent  function is  an ideal transfer function 

Bardina and Rajkumar (1993). 

 

The process of defining an appropriate neural network architecture can be divided into the 

following categories:  (i)  determining the type of neural network; (ii) determining the number of 

hidden  neurons; (iii) selecting the type of transfer functions; (iv) devising a training algorithm; and 

(v) checking for over and/or  under fitting of the results and validation of neural network output.  If 

a function consists of a finite number of points, a  three layer neural network is capable of learning 

that function. This results agree with Bardina and Rajkumar (1993) who conclude that a  three layer 

neural network with a Levenberg-Marquardt training algorithm using pure  linear,  hyperbolic  

tangent,  and  sigmoid  as a transfer functions   was sufficient  for prediction of aerodynamic 

coefficients.  

 

The  type of Artificial Neural Network (ANN) could be static or dynamic. Dynamic 

networks are generally more powerful than static networks (although somewhat more difficult to 

train). Because dynamic networks have memory, they can be trained to learn sequential or time-

varying patterns. One principal application of dynamic neural networks is in control systems.  In 

order to predict temporal patterns, an ANN requires two distinct components: a memory and an 

associator. The memory is generated by a time delay unit (or shift register) that constitutes the 

tapped delay line, it holds the relevant past information, and uses the memory to predict future 

events. The associator can be a static Multilayer Perceptron Neural Network (MLPNN) is a 

memoryless network that is effective for complex non-linear static mapping El-Shafie et al. (2012). 

Figure 1 display the main structure of the dynamic neural network called Layered Digital Dynamic 

Network (LDDN), which is available in the software Matlab.  

 

Figure  12  Layered Digital Dynamic Network (LDDN) 

 

 
TDL=tapped delay line; LW= weights in the hidden layers; IW= weights in the input layer, b= bias unit; 

f= transfer functions between layers 
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In this work we dealt with the problem of predicting tomato yields, which a problematic area 

in greenhouse production.  The tomato crop data has nonlinear dynamic behaviour and whose 

response depends not only on several environmental factors but also on the current and previous 

crop conditions Qaddoum et al. (2013). Therefore, our purpose is to develop a Layered Digital 

Dynamic Network (LDDN),  to explain the weekly fluctuations of greenhouse tomato yields, for 

two greenhouses one is a high technology conventional greenhouse and the other is a semiclosed 

greenhouse. 

 

12.1 Methodology 

 

An experiment was done to measure tomato yields  in a semiclosed and reference greenhouses, 

located at Humboldt University of Berlin. The  collection yield  data  is   expensive and time 

consuming,  it requires the destruction of vegetative material, so the model development will  save 

money and give additional advantages.  The first yield of Pannovy cultivar was achieved in calendar 

week 17, the last one in calendar week 43 (Dannehl, 2012). First there was a  selection of the 

important input variables to predict yields: Cumulative transpiration, CO2 fixation and global 

radiation, the behaviour of such variables are displayed in Figure 2, together with yields for the two 

greenhouses.  

 

Figure 12.1 Cumulative transpiration, CO2 fixation, global radiation and yield for the  collector and 

the reference greenhouses 
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As can be seen in Figure 2,  there were only 27 data patterns for training , validation, testing 

and simulation of the ANN. Many architectures were tested for the Multilayer Perceptrum Artificial 

Neural Network (MLPNN), but none of them have acceptable performance. Therefore, a dynamic 

neural network was the best choice. The Layered Digital Neural Network (Figure.1),  includes delay 

lines between the layers. So the output depends also on previous inputs and/or previous states of the 

network. The dynamic neural networks in which all layers have feedback connections with several 

time delays mean that the temporal feature could be considered in the model structure.  
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Each layer in the LDDN have a set of weight matrices that come into that layer (which can 

connected from other layers or from external inputs), associated weight function rule used to 

combine the weight matrix with its input (normally standard matrix multiplication, dotprod), and 

associated tapped delay line. The weights have two different effects on the network output. The first 

is the direct effect, because a change in the weight causes an immediate change in the output at the 

current time step (This first effect can be computed using standard backpropagation). The second is 

an indirect effect, because some of the inputs to the layer, such as a (t −1), are also functions of the 

weights. To account for this indirect effect, the dynamic backpropagation  is used  to compute the 

gradients, which is more computationally intensive, and  training is more likely to be trapped in 

local minima. This suggests that there is a  need to train the network several times to achieve an 

optimal result.  The Bias vector is a net input function rule that is used to combine the outputs of the 

various weight functions with the bias to produce the net input (normally a summing junction, 

netprod). 

 

Still there are some questions to be answered like number of hidden layers  and hidden 

nodes and the transfer functions. It is unclear how  many layers and how many neurons in each 

layer  should be used , usually are chosen empirically (Bardina and Rajkumar, 1993). The additional 

hidden layers through which errors must be backpropagated  makes the gradient more unstable, and 

the number of false minima increases.  Besides, overfitting can arise when training sets are small 

relative to the number of hidden neurons, the training set size and the hidden layer size are tied 

together (Moustafa, 2011). Although dynamic networks can be trained using the same gradient-

based algorithms that are used for static networks, the performance of the algorithms on dynamic 

networks can be quite different, and the gradient must be computed in a more complex way.   An  

important issue in the ANN is how to measure the performance and according to Masters (1993), 

the Mean Square Error (MSE)  fails to distinguish between minor and serious errors. Therefore, 

other two statistical measures were used to examine the goodness of fit,  the correlation coefficient 

“R” and the mean absolute error defined in Marzban (2009)  

                                                                                                            (12) 

 

A sensitivity analysis was performed varying individual inputs while all other are fixed to 

find out what was  the most important variable for yield prediction. 

 

12.2 Results  

 

For the  input and output variables two delays were included, so we lost two data patterns. The 

weeks from 17-32 were used for training validation and testing the LDNN,  weeks 33-40 were used 

for simulation purposes. We test different architectures and the best LDNN model was chosen on 

the basis of minimum number of hidden layer and hidden nodes with a high R, and a  low absolute 

error.  The best LDDN has one hidden layer with four nodes, six delays for the input and four 

delays for the output variables, as shown in Figure 3.  
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Figure 12.2 Dynamic Neural Network Architecture 

 

 

 

 

 

 

 

 

 

 

The transfer function for the input and hidden  layer was the sigmoid tangent function and 

for the output the purelin function, the training function used the backpropagation algorithm.  

Figure 4 display the results for training, validation and testing of the LDNN for the collector 

greenhouse, with R=0.9768 and MAE=1.7031.  

 

Figure 12.3  Training, validation and testing  of the  Dynamic Neural Network Collecto 

Greenhouse with all variables 
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The Layered Digital Neural Network was used for simulation purposes for the weeks 33-40, 

the table and graph are shown in Figure 5, this results show the power of the LDNN, the simulation 

was made using the inputs  without providing the outputs, only the delay in yields  with an 

R=0.9901, MAE=0.3054.   
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Figure 12.4 Yield simulation for the  collector greenhouse 
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The results obtained for the reference greenhouse which is a conventional one , were not as 

good as for the collector greenhouse, the R=0.9235 and MAE=2.65 (Figure 6)  our assumption is 

that the collector greenhouse has less disturbances from the outside environment than the reference 

greenhouse. 

 

Figure 12.5 Training validation and testing and simulation of the  Dynamic Neural Network 

Reference greenhouse with all variables 
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For this case,  the simulation is shown in Figure 7, with an R=0.8286 and MAE=0.3296.  
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Figure 12.7 Yield simulation for the  reference greenhouse 
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A sensitivity analysis was performed to detect what is the most important variable for yield 

prediction, results are display in Table 1. 

 

Table 12 Sensitivity analysis of the input variables for the collector greenhouse (simulation) 

 

 

R Absolute error 

All variables  0.9901 0.0697 

Without  

Transpiration 

0.9348 0.0836 

Without CO 2  

enrichment 

0.7382 0.1341 

Without Rad 0.8905 0.2252  
 

 According to this result, CO2 has a prominent importance in yield prediction, when this 

variable is not considered in the LDNN, the correlation coefficient is small (0.7382), and MAE 

increase to 0.1341. 

 

12.3 Conclusions  

 

Choosing the proper type of neural network for a certain problem can be a critical issue. So it is 

very important to define the following in order to achieve a good model: The input sets, the target 

sets, the network architecture, the activation functions, the training function, the training rate, the 

goal and  the number of iterations. 

 

For the data at hand,  we suggest a certain network structure that yielded optimal results for 

this particular case , Layered Digital Dynamic Network (LDDN) improves by far the standard MLP 

forecast accuracy.  This work shows the power of the dynamic NN compared to static, specially 

when there are few data patterns. The Artificial Neural Networks predictions are more precise in 

closed greenhouse systems, because  there are less disturbances from the outside environment as in 

open greenhouses, besides the lost of humidity from ventilation closes the stomata and 

photosynthesis decreases. The results from the model  could be  a  valuable information for making 

decisions on climate and crop management and in synchronizing crop production with market 

demands. 
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