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Abstract 

 

In this work is proposed a methodology for a global 

variable-structure controller (GVSC) applied to 

nonlinear, time-varying and underactuated systems 

affected by both matched and unmatched perturbations, 

the main idea is designed a GVSC with an integral 

sliding mode control coupled together with a nonlinear 

ℋ∞  control. It is theoretically proven that, using the 

proposed controller, the trajectories of the states in the 

feedback loop systems are forced to stay into the sliding 

mode and reject the coupled perturbations by the integral 

sliding mode control, and the stability of feedback loop 

system into the switching mode and the attenuated 

uncoupled perturbations are done by nonlinear ℋ∞  

control. This structure is used to solve the trajectory 

tracking problem in the l degrees of freedom (DOF) 

manipulators robots with flexible and rotational joints. 

The performance issues of the GVSC are illustrated in 

simulation studies made for a three-DOF robot 

manipulator. 

 

Robust control, Nonlinear systems, Manipulator 

robots 

 

Resumen 

 

Se propone la metodología del diseño de un controlador 

global de estructura variable (CGEV) compuesto de un 

control por modo deslizante integral en combinación de 

un control ℋ∞ no lineal para sistemas no lineales, 

subactuados y variantes en el tiempo afectado por 

perturbaciones acopladas y no acopladas. La finalidad de 

la estructura propuesta es que el control por modo 

deslizante integral mantenga las trayectorias de los 

estados del sistema en lazo cerrado dentro del modo 

deslizante y rechace las perturbaciones acopladas y el 

control ℋ∞  no lineal garantice la estabilidad del sistema 

en lazo cerrado dentro del modo deslizante y atenué las 

perturbaciones no acopladas. La validación de la 

estructura de control propuesta se realiza a través de la 

simulación de un ejemplo numérico que resuelve el 

problema de regulación de movimiento en un robot 

manipulador de l grados de libertad (GDL), con 

articulaciones rotacionales que presenta el efecto de 

elasticidad. 

 

Control robusto, Sistemas no lineales, Robots 

manipuladores 
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Introduction 

 

This paper deals with the analysis and design of 

a global control of variable structure (CGEV) 

based on the control by integral sliding mode in 

combination with the control H_∞ for nonlinear 

systems varying in time affected by both 

coupled and uncoupled perturbations . As a 

case study will solve the problem of regulation 

of movement in a robot manipulator of degrees 

of freedom with rotational joints that have the 

undesired effect of elasticity in each of them, as 

well as the effect of the mentioned 

disturbances. 

 

 Regarding this line is the work of Utkin, 

(1992) with the control by sliding mode that has 

been used successfully when there is 

uncertainty in the parameters and to reject 

coupled external disturbances, besides 

concluding stability in finite time, the stability 

of the system In closed loop it is only 

guaranteed when its dynamic enters the sliding 

mode, however, the drawback of this controller 

is the effect of chattering in the control signal.   

 

 The control by integral sliding mode 

appears in the decade of the 90's (Utkin, 

Guldner and Shi, 2009) present the advantages 

of the control by sliding mode, and solve the 

problem of the reach to the surface with a 

function that guarantees that the dynamics of 

the system in closed loop initiate and stay in it, 

in addition to reducing the effect of chattering 

on the control signal due to the integrator.  

 

 In Wen and Jian, (2001) an integral 

sliding mode control is proposed in 

combination with an optimal quadratic linear 

regulator for nonlinear systems that vary in time 

in the presence of uncoupled perturbations and 

its main contribution was to propose the variant 

sliding function in the time and show that the 

uncoupled disturbances remain in the sliding 

mode for all time.  

 

 In Castaños and Fridman, (2009) continue 

with the previous work, providing new 

elements such as separating the disturbances 

into coupled and uncoupled and propose a 

controller H∞ locally for the nominal control in 

order to attenuate the uncoupled disturbances.  

 

  

 

 

 In Rubagotti, Castaño, Ferrara and 

Fridman, (2011) and Fridman, Barbo, Plestan, 

(2016) and Galvan and Fridman (2015) extend 

the last two works by proposing a sliding 

function where the projection matrix varies 

according to the states of the system and 

recently is the work of Miranda, Chavez and 

Aguilar, (2017) in it proposes a variable 

structure control composed of a sliding mode 

control and a non-linear H∞ control for a 

mechanical system of a rotational articulation 

with the elasticity effect. Based on the previous 

work we propose a global variable structure 

controller that solves the problem of regulation 

of movement of the manipulator arm of l 

degrees of freedom and also attenuated the 

effects of coupled and uncoupled disturbances. 

 

The present article is organized as 

follows: section II provides the characteristics 

of the plant and the global control of variable 

structure analyze, section II presents the design 

of the CGEV in general form for a non-linear 

system variant with the time and not 

autonomous, section III is designed the CGEV 

for the case of a robot manipulator of degrees of 

freedom with rotational and flexible 

articulations that present coupled and 

uncoupled perturbations and validates the 

theory with a practical case of a mechanical 

system of a degree of freedom in MatLab / 

Simulink, finally the results obtained and the 

conclusions are presented. 

 

1. Problem Statement 

 

Consider the following nonlinear and variant 

time system of the form: 
 

𝑥̇ = 𝑓(𝑥, 𝑡) + 𝑔2(𝑥, 𝑡)(𝑢 + 𝑤𝑚) + 𝑔2
⊥(𝑥, 𝑡)𝑤𝑢   (1) 

 

where t∈ ℝ + represents the time, x (t) ∈ ℝ 

n is the state vector, u (t) ∈ ℝ m is the control 

input vector, w_m (t) ∈ ℝ m, w_u (t) ∈ ℝ nm are 

coupled and uncoupled perturbations 

respectively, uncoupled perturbations are 

assumed to belong to the space L2
e (0, T) where 

(Khalil, 2015) 

 

ℒ2
𝑒(0, 𝑇) = ∫ ‖𝑤𝑢(𝑡)‖

2𝑑𝑡 < ∞
𝑇

0
                

 

and considering that both disturbances are 

bounded by: 

 
‖𝑤𝑚(𝑡)‖∞ ≤ 𝑊𝑚

+,  ‖𝑤𝑢(𝑡)‖∞ ≤ 𝑊𝑢
+            (2) 
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𝑊𝑚
+ and 𝑊𝑢

+ they are constants that are 

known a priori. The functions 𝑓 (𝑥, 𝑡) and 𝑔2 

(𝑥, 𝑡) are assumed to be continuous to sections 

in 𝑡 for all 𝑥 and continuously differentiable in 

𝑥 for all 𝑡. Sea la función matricial  𝑔2
⊥(𝑥, 𝑡) ∈

ℝ𝑛×(𝑛−𝑚) of full column range that is the 

orthogonal complement of g2 (x, t) such that 

𝑔2
𝑇(𝑥, 𝑡)𝑔2

⊥(𝑥, 𝑡) = 0 for all x and all t 

(Fridman, 2014). The system (1) satisfies the 

following assumption. 

 

Assumption 1. Be the rank(𝑔2(𝑥, 𝑡)) = 𝑚 for 

all (𝑥, 𝑡) ∈ ℝ𝑛 × ℝ+. 

 

If the above assumption is fulfilled then 

the law of global control of variable structure 

for the system (1) of the form is proposed: 

 

𝑢(𝑡) = 𝑢𝑠(𝑡) + 𝑢1(𝑡)                                    (3) 

 

where us (t) is the control in the sliding 

mode responsible for the trajectories 

converging to the origin while the uncoupled 

perturbations wu (t) are attenuated and u1 (t) is 

the control by integral sliding mode which 

incorporates an integrator in the control 

discontinuous and its function is to reject the 

coupled perturbations wm (t) and to prevent the 

system trajectories from leaving the sliding 

mode. 

 
2. Design of the CGEV  

 

The design of the CGEV is developed in two 

stages, the first consists of the design of the 

control by integral sliding mode and the second 

of the controller H∞ non-linear. 

 

2.1. Control design by integral sliding mode 

 

Consider the following sliding surface for the 

disturbed system (1) of the form 

 

𝑠(𝑥, 𝑡) = 𝐷 ((𝑥(𝑡) − 𝑥(𝑡0) − ∫ (𝑓(𝑥𝑠, 𝑡) + 𝑔2(𝑥𝑠, 𝑡)𝑢𝑠)𝑑𝑡
𝑡

𝑡0
)       (4) 

 

where 𝐷 ∈ ℝ𝑚×𝑛 it is a constant matrix 

and 𝑥𝑠(𝑡) ∈ ℝ
𝑛 it is the vector of states in the 

sliding mode. The sliding function s (x, t) 

represents the difference between the 

trajectories of the disturbed system (1) and of 

the plant in the sliding mode weighted by the 

matrix D. It is notable to note that the sliding 

mode starts with the initial condition, that is, 

𝑡 = 𝑡0, 𝑠(𝑥, 𝑡) = 0. It is assumed that the 

system (1) satisfies the following assumption. 

 

Assumption 2. Let Dg2 (x, t) be uniformly 

invertible for all (𝑥, 𝑡) ∈ ℝ𝑛 × ℝ+. 

 

 If assumption 2 is satisfied, then the 

control by integral sliding mode is of the form 

 

𝑢1(𝑡) = −Γ 𝑆𝑖𝑔𝑛(𝑠(𝑥, 𝑡))                              (5) 

 

where 𝑆𝑖𝑔𝑛(𝑠(𝑥, 𝑡)) = [𝑠𝑖𝑔𝑛(𝑠1), 𝑠𝑖𝑔𝑛(𝑠2),⋯ , 𝑠𝑖𝑔𝑛(𝑠𝑚) ]𝑇, 

and the sign function is defined in the way: 

 

𝑠𝑖𝑔𝑛(𝑠) = {

1 𝑦𝑒𝑠 𝑠 > 0
0 𝑦𝑒𝑠 𝑠 = 0
−1 𝑦𝑒𝑠 𝑠 < 0

   

 

Regarding the control gain by integral 

sliding mode, it is subject to: 

 

𝛤 > 𝑊𝑚
+ +

‖𝑔2
⊥(𝑥,𝑡)‖

‖𝑔2(𝑥,𝑡)‖
𝑊𝑢
+                                     (6) 

 

where ‖∙‖ refers to the Euclidean norm. 

The gain (6) is to force the trajectories of the 

system (1) not to leave the sliding surface 

𝑠(𝑥, 𝑡) = 0. 

 

2.1.1. Equivalent control 
 

The analysis of the equivalent control 𝑢1𝑒𝑞 

(Utkin, 1992) is obtained by making 𝑠(𝑥, 𝑡) =
𝑠̇(𝑥, 𝑡) = 0, that is 

  

𝑠̇ = 𝐷𝑔2(𝑥, 𝑡)(𝑢1 + 𝑤𝑚) + 𝐷𝑔2
⊥(𝑥, 𝑡)𝑤𝑢 = 0  

 

Clear 𝑢1(𝑡) and make 𝑢1 → 𝑢1𝑒𝑞 in the 

previous equation you have to 

 

𝑢1𝑒𝑞 = −𝑤𝑚 − (𝐷𝑔2(𝑥, 𝑡))
−1
𝐷𝑔2

⊥(𝑥, 𝑡)𝑤𝑢. 

 

 Substituting the equation (7) in (1) the 

following system is obtained in the sliding 

mode: 

 

𝑥̇𝑠 = 𝑓(𝑥𝑠, 𝑡) + 𝑔2(𝑥𝑠, 𝑡)𝑢𝑠 + (𝐼 −

𝑔2(𝑥𝑠, 𝑡)(𝐷𝑔2(𝑥𝑠, 𝑡))
−1
𝐷)𝑔2

⊥(𝑥𝑠, 𝑡)𝑤𝑢,       (8) 

 

where 𝑥̇𝑠 ∈ 𝒮 = {𝑥 ∈ ℝ
𝑛: 𝑠(𝑥, 𝑡) = 0}. 

Note that the uncoupled disturbances remain in 

the plant in the sliding mode which motivates 

the use of the non-linear H∞ control to attenuate 

its effects. 
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2.2. Control design H∞ non-linear  

 

Once the trajectories are in the domain of 𝒮, 
then the system (8) takes the form 

      
𝑥̇𝑠  = 𝑓(𝑥𝑠 , 𝑡) + 𝑔2(𝑥𝑠 , 𝑡)𝑢𝑠 +

(𝐼 − 𝑔2(𝑥𝑠 , 𝑡)(𝐷𝑔2(𝑥𝑠, 𝑡))
−1
𝐷) 𝑔2

⊥(𝑥𝑠 , 𝑡)⏟                          
𝑔3(𝑥𝑠,𝑡)

𝑤𝑢(𝑡)         (9) 

 

𝑧 = ℎ1(𝑥𝑠, 𝑡) + 𝑘12(𝑥𝑠, 𝑡)𝑢𝑠 
 

𝑦 = ℎ2(𝑥𝑠, 𝑡) 
 

 where 𝑧(𝑡) ∈ ℝ𝑠 is the vector of the 

unknown output to be controlled, 𝑦(𝑡) ∈ ℝ𝑛 it 

is the output vector available for system 

measurement. It is assumed that the system (9) 

satisfies the following assumptions: 

 

Assumption 3. Functions f, g2, g3, h1, h2 

and k12 are assumed to be continuous at t, 

continuously differential at xs and of 

appropriate dimensions. 

 

Assumption 4. Let 𝑓(0, 𝑡) = 0, ℎ1(0, 𝑡) =
0,  y  ℎ2(0, 𝑡) = 0 for all ≥ 0 . 

 

Assumption 5. Let ℎ1
𝑇𝑘12 = 0, 𝑘12

𝑇 𝑘12 =
𝐼 se must satisfy for all  (𝑥𝑠, 𝑡) ∈ ℝ

𝑛 ×ℝ+. 

 

 Assumption 3 ensures that the 

dynamics of the system are well positioned, 

while the system is excited with external inputs. 

Assumption 4 ensures that the origin is the only 

equilibrium point in the absence of inputs us (t) 

= 0 and disturbances wu (t) = 0 for the dynamic 

system (9). Assumption 5 is related to 

numerical advantages considered in the H∞ 

standard control problem (Orlov, 2014). 
 

The law of control 

 

𝑢𝑠(𝑡) = Κ(𝑥𝑠, 𝑡)                                           (10) 

 

It is a globally admissible driver by 

feedback of states if the closed loop system (9) 

and (10) is asymptotically stable globally as 

long as 𝑤𝑢 = 0. The gain L2 of the system (9) is 

less than γ if the response of z (t), result of wu 

(t) for a vector of initial states xs (0) = 0 

satisfies the following inequality 

 

∫ ‖𝑧(𝑡)‖2𝑑𝑡 < 𝛾2 ∫ ‖𝑤𝑢(𝑡)‖
2𝑑𝑡

𝑡1

𝑡0

𝑡1

𝑡0
             (11) 

 

 

For all 𝑡1 > 𝑡0 and every function 

continues in sections 𝑤𝑢(𝑡). A permissible local 

controller (10) constitutes a local solution to the 

control problem H∞ if there is a region U 

around the equilibrium point such that the 

inequality (11) is satisfied for all t1> t0 and a 

continuous function with stretches wu (t) for 

which the trajectories of the states of the closed 

loop system start at the point given by the 

vector xs (0) = 0 and remain in U for all 𝑡 ∈
[𝑡0, 𝑡1] (Isidori y Astol, 1992). 
 

 Next, the hypothesis under which the 

solution to the problem of control is given is 

presented ℋ∞. 

 

 Hypothesis 1 (Orlov, 2014). There is a 

positive definite function F (xs, t) and a soft 

definite positive function V (xs, t) such that the 

inequality of Hamilton-Jacobi-Isaacs 

 
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥𝑠
𝑓 + 𝛾2𝛼1

𝑇𝛼1 − 𝛼2
𝑇𝛼2 + ℎ1

𝑇ℎ1 + 𝐹 ≤ 0         (12) 

 

it is fulfilled with 

 

𝛼1(𝑥𝑠, 𝑡) =
1

2𝛾2
𝑔3
𝑇(𝑥𝑠, 𝑡) (

𝜕𝑉(𝑥𝑠,𝑡)

𝜕𝑥𝑠
)
𝑇

  

𝛼2(𝑥𝑠, 𝑡) = −
1

2
𝑔2
𝑇(𝑥𝑠, 𝑡) (

𝜕𝑉(𝑥𝑠,𝑡)

𝜕𝑥𝑠
)
𝑇

. 

 

Given hypothesis 1 the following theorem 

is postulated: 

 

Theorem 1 (Orlov, 2014). Assume that 

hypothesis 1 is valid. Then a solution to the 

control problem H∞ is given for the closed loop 

system (9) through the law of control by 

feedback of states  

 

𝑢𝑠(𝑡) = 𝛼2(𝑥𝑠, 𝑡)                                          (13) 

 

which stabilizes asymptotically the 

system free of disturbances (9) and makes the 

gain L2 of the system in the sliding mode (9) is 

smaller than 𝛾. 

 

Figure 1 shows the block diagram of a 

feedback system based on the CGEV composed 

of the integral sliding mode control and the 

non-linear H∞ control applied to a non-linear 

and non-autonomous plant with coupled and 

uncoupled perturbations, where 𝑥𝑑(𝑡) ∈ ℝ
𝑛 is 

the vector of desired states. 
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2.2.1. System stability analysis 
 

The stability of the system in closed loop (1), 

(3) is demonstrated in the theorem of Miranda, 

Chavez and Aguilar, (2017), which raises the 

following: be the assumptions 3-5 and 

hypothesis 1 satisfied and be the system non-

linear (1) with the control (5) that satisfies (9) 

next to the control H∞ (13). Then the 

equilibrium point of the closed loop system (1), 

(5) and (13) is asymptotically stable and the 

gain L2 of the system in the sliding mode is less 

than γ in the presence of disturbances that 

satisfy (2). 

 

I. Case study: Track tracking problem 

for a robot with flexible joints 

 

The elasticity effect is very common in 

manipulator robots, this phenomenon occurs 

when the movement of the actuator is 

transmitted to the articulation by means of 

toothed belts, chains, cables, use of gears, cyclo 

reducers, Harmonic Drive reducers, etc. all 

these elements introduce a variation in 

displacement with respect to time, that is why it 

is necessary, according to (Rivin, 1985), to 

incorporate the elasticity effect in the dynamic 

model of the robot, coupled with this 

phenomenon we have the uncoupled 

perturbations that are present as external 

disturbances, which affects the performance of 

the system in closed loop. 
 

 
 

Figure 1 Global control of variable structure 

Source: Self Made 

 

 The system under study, governed by the 

following differential equations (Spong and 

Vidyasagar, 1989): 

 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) + 𝐾(𝑞 − 𝜃) + 𝑤𝑢 = 0    (14) 
 

𝐽𝜃̈ − 𝐾(𝑞 − 𝜃) = 𝜏 + 𝑤𝑚  

 

 

 

 

 

 Where 𝑞(𝑡) ∈ ℝ𝑙  is the joint position 

vector, 𝑞̇(𝑡) ∈ ℝ𝑙  is the joint velocity vector, 

𝜃(𝑡) ∈ ℝ𝑙 is the position vector of the actuator, 

and due to the elasticity effect 𝑞(𝑡) ≠ 𝜃(𝑡) 
while the mechanism is in motion, 𝑀(𝑞) ∈
ℝ𝑙×𝑙 is a positive definite symmetric matrix that 

represents the inertial matrix, 𝐶(𝑞, 𝑞̇) ∈ ℝ𝑙×𝑙 is 

the matrix of centrifugal and Coriolis forces, 

𝑔(𝑞) ∈ ℝ𝑙 is the vector of gravitational torque,    

𝐾 ∈ ℝ𝑙×𝑙 is a positive definite symmetric 

matrix that represents the torsional constants of 

flexible joints (𝐾 = 𝑑𝑖𝑎𝑔{𝑘1, 𝑘2, ⋯ , 𝑘𝑙}), 𝐽 ∈
ℝ𝑙×𝑙 is a positive definite symmetric matrix that 

contains in its main diagonal the product of the 

moments of inertia of the engine (ji) by the 

square of the ratio of turns of the transmission 

(ri), that is to say 𝐽 = 𝑑𝑖𝑎𝑔{𝑗1𝑟1
2, 𝑗2𝑟2

2,⋯ , 𝑗𝑙𝑟𝑙
2},  

𝜏(𝑡) ∈ ℝ𝑙 is the vector of forces and pairs 

applied to the joints and 𝑤𝑢(𝑥, 𝑡), 𝑤𝑚(𝑡) ∈ ℝ
𝑙 

They denote uncoupled and coupled 

disturbances respectively due to the uncertainty 

of the model or external disturbances. Equation 

(14) represents a mechanical system with 

flexible joints subject to coupled and uncoupled 

disturbances. 

 

1.1. Control objective 

 

The trajectory tracking problem of the 

manipulator robot with flexible joints (14) is 

established in the following way: given a 

limited set of functions 𝑞𝑑(𝑡), 𝑞̇𝑑(𝑡), 𝑞̈𝑑(𝑡) ∈
ℝ𝑙 referred to as desired joint positions, 

velocities and accelerations, respectively; The 

objective of control is to ensure the global 

asymptotic stability of the equilibrium point of 

the closed loop system, ie 
 

lim
𝑡→∞

‖𝑞(𝑡) − 𝑞𝑑(𝑡)‖ = 0                               (15) 

 

for any arbitrary initial condition 𝑞(0) ∈
ℝ𝑙, and for the disturbance-free system (14), 

finally, the gain L2 of the disturbed system in 

the sliding mode is satisfied is less than γ with 

respect to the output 𝑧(𝑡). 
 

1.2. Design of the CGEV for the 

manipulator robot 

 

The representation in state variables of the 

system (14) in terms of errors is given by 

 

𝑒̇1 = 𝑒2                        (16) 
 

   



6 

Article                                                     ECORFAN Journal Democratic Republic of Congo                            
                                                                              June 2018 Vol.4 No.6 1-10 

 

 
CHAVEZ-GUZMAN, Carlos Alberto, PEREZ-GARCIA, Alejandro, 
ESQUEDA-ELIZONDO, Jose Jaime and MERIDA-RUBIO, Jovan 

Oseas. Global variable-structure controller applied to l degree of 

freedmon manipulators robots with rotational flexible joint. ECORFAN 

Journal-Democratic Republic of Congo 2018 

ISSN: 2414- 4924 

ECORFAN® All rights reserved 

𝑒̇2 = 𝑀(𝑒1 + 𝑞𝑑)
−1[𝑀(𝑒1 + 𝑞𝑑)𝑞̈𝑑 −

𝐶(𝑒1 + 𝑞𝑑 , 𝑒2 + 𝑞̇𝑑)(𝑒2 + 𝑞̇𝑑) − 𝑔(𝑒1 + 𝑞𝑑) −
𝐾(𝑒1 + 𝑞𝑑 − 𝜃) − 𝑤𝑢]  
𝑒̇3 = 𝑒4  
𝑒̇4 = 𝐽

−1[−𝐽𝜃̈𝑑 + 𝐾(𝑒1 + 𝑞𝑑 − 𝜃) + 𝜏 + 𝑤𝑚]  
 

 where 𝑒1(𝑡) = 𝑞(𝑡) − 𝑞𝑑(𝑡) is the error 

vector of joint positions, 𝑒2(𝑡) = 𝑞̇(𝑡) − 𝑞̇𝑑(𝑡) 
is the error vector of joint velocities, 𝑒3(𝑡) =
𝜃(𝑡) − 𝜃𝑑(𝑡) is the vector of errors positions of 

the actuator and finally 𝑒4(𝑡) = 𝜃̇(𝑡) − 𝜃̇𝑑(𝑡) is 

the actuator speed error vector. 
 

Decoupling the states of the system (16) 

facilitates the synthesis of the control H∞, 

therefore, a virtual control entry is proposed 

according to the regular form of Utkin, (1992) 

within the state 𝜃(𝑡) = 𝜂(𝑡) + 𝜃𝑑(𝑡), and you 

get the solution based on the virtual control 𝜂  

de 𝑒̇ = 0, as: 

 

𝜂(𝑡) = 𝐾−1[𝑀(𝑞𝑑)𝑞̈𝑑 + 𝐶(𝑞𝑑, 𝑞̇𝑑)𝑞̇𝑑 +
𝑔(𝑞𝑑)] + 𝑞𝑑 − 𝜃𝑑 − 𝐾𝑝1𝑒1 − 𝐾𝑑1𝑒2           (17) 

 

The earnings 𝐾𝑝1 = 𝐾𝑝1
𝑇 > 0 y 𝐾𝑑1 =

𝐾𝑑1
𝑇 > 0 they assure that the states (𝑒1, 𝑒2)

𝑇 →
0  when 𝑡 → ∞.  Finally, a coordinate change is 

made with the function 𝜎 = 𝑒3 − 𝜂 which is 

derived continuously until the control input τ of 

the form appears 𝜎̈ = 𝑒̇4 − 𝜂̈ and doing what 

𝑒̇4 − 𝜂̈ = 0 is obtained 

 

Proposition 3. Shape stabilizer control: 

 

𝜏(𝑡) = 𝐽(𝜂̈ + 𝜃̈𝑑) − 𝐾(𝑥1 + 𝑞𝑑 − 𝜂 − 𝜃𝑑) −

𝐾𝑝2𝑥3 − 𝐾𝑑2𝑥4 + 𝑢                                     (18) 

 

Where the new states are 𝑥1 = 𝑒1, 𝑥2 =

𝑒2, 𝑥3 = 𝜎, 𝑥4 = 𝜎̇ y 𝜃𝑑(𝑡), 𝜃̇𝑑(𝑡), 𝜃̈𝑑(𝑡) ∈ ℝ
𝑙    

are the desired angle, speed and acceleration of 

the motor, respectively; 𝑢(𝑡) is the global 

control defined in (3) y 𝐾𝑝2 = 𝐾𝑝2
𝑇 > 0 y 𝐾𝑑2 =

𝐾𝑑2
𝑇 > 0. 

 

The representation of the system in closed 

loop in terms of the new defined states x (t) that 

are obtained by substituting (17) and (18) in 

(16), is given by 

 

𝑥̇1 = 𝑥2                                                         (19) 

𝑥̇2 = 𝑀(𝑥1 + 𝑞𝑑)
−1[−ℎ(𝑥, 𝑡) − 𝐶(𝑥1 +

𝑞𝑑 , 𝑥2 + 𝑞̇𝑑)𝑥2 − (𝐾 𝐾𝑝1)𝑥1 −𝐾 𝐾𝑑1𝑥2 + 𝑤𝑢]  

𝑥̇3 = 𝑥4  

𝑥̇4 = 𝐽
−1[−𝐾𝑝2𝑥3 − 𝐾𝑑2𝑥4 + 𝑢 + 𝑤𝑚]   

 

where ℎ(𝑥, 𝑡) = [𝑀(𝑥1 + 𝑞𝑑) −
𝑀(𝑞𝑑)]𝑞̈𝑑 + [𝐶(𝑥1 + 𝑞𝑑, 𝑥2 + 𝑞̇𝑑) −
𝐶(𝑞𝑑, 𝑞̇𝑑)]𝑞̇𝑑 + 𝑔(𝑥1 + 𝑞𝑑) − 𝑔(𝑞𝑑).  
 

The feedback system is decoupled in two 

sections (one mechanical and one actuator) with 

a control input τ, and its origin in 𝑥0 = 0 ∈ ℝ
𝑛  

it will be a unique balance point if and only if 

 

𝜆𝑚𝑖𝑛 {𝐾𝑝1} >
𝐾𝑔+𝐾𝑀‖𝑞̈𝑑‖+𝐾𝑐2‖𝑞̇𝑑‖

2−𝜆𝑚𝑖𝑛{𝐾}

𝜆𝑚𝑖𝑛{𝐾}
   (20) 

 

The discontinuous control (5) is designed 

from (19) where 

 

𝑓(𝑥, 𝑡) = [

𝑥2
𝑥𝜓
𝑥4

𝐽−1[−𝐾𝑝2𝑥3 − 𝐾𝑑2𝑥4]

]              (21) 

 

with 𝑥𝜓 = 𝑀(𝑥1 + 𝑞𝑑)
−1[−ℎ(𝑥, 𝑡) −

𝐶(𝑥1 + 𝑞𝑑, 𝑥2 + 𝑞̇𝑑)𝑥2 − (𝐾 + 𝐾𝑝1)𝑥1 −

𝐾 𝐾𝑑1𝑥2], and the functions  

 

𝑔2(𝑥, 𝑡) = [

0
0
0
𝐽−1

], 𝑔2
⊥(𝑥, 𝑡) = [

0
𝑀(𝑥1 + 𝑞𝑑)

−1

0
0

]          (22) 

 

Based on the system (8) where the 

expression is defined 

 

(𝐼 − 𝑔2(𝑥𝑠, 𝑡)(𝐷𝑔2(𝑥𝑠, 𝑡))
−1
𝐷)𝑔2

⊥(𝑥𝑠, 𝑡)   

 

 and by substituting D = [0,0,0, J], then the 

representation on the sliding surface is reduced 

to the form: 

 

𝑥̇𝑠 = 𝑓(𝑥𝑠, 𝑡) + 𝑔2(𝑥𝑠, 𝑡)𝑢𝑠 + 𝑔2
⊥(𝑥𝑠, 𝑡)𝑤𝑢       (23) 

 

where the us control is designed through 

the non-linear H∞ control technique. The target 

output for the motion regulation problem is 

proposed 

 

𝑧 =

[
 
 
 
 

𝑢𝑠
𝜌 𝑡𝑎𝑛ℎ(𝑥𝑠1)

𝜌 𝑥𝑠2
𝜌 𝑡𝑎𝑛ℎ(𝑥𝑠3)

𝜌 𝑥𝑠4 ]
 
 
 
 

                                        (24) 

 

where ρ is a positive constant and 

tanh(𝑥𝑠𝑖) , 𝑖 = 1,3, it is the hyperbolic tangent 

function. The position and speed of the 

articulation and the actuator are available for 

feedback. 



7 

Article                                                     ECORFAN Journal Democratic Republic of Congo                            
                                                                              June 2018 Vol.4 No.6 1-10 

 

 
CHAVEZ-GUZMAN, Carlos Alberto, PEREZ-GARCIA, Alejandro, 
ESQUEDA-ELIZONDO, Jose Jaime and MERIDA-RUBIO, Jovan 

Oseas. Global variable-structure controller applied to l degree of 

freedmon manipulators robots with rotational flexible joint. ECORFAN 

Journal-Democratic Republic of Congo 2018 

ISSN: 2414- 4924 

ECORFAN® All rights reserved 

𝑦 = 𝑥𝑠                                                         (25) 

 

while equations (21) - (22), (24) - (25) are 

represented in the generalized form (23) and the 

remaining functions of the form (9) are: 

 

ℎ1 = 𝜌

[
 
 
 
 

0
𝑡𝑎𝑛ℎ(𝑥𝑠1)
𝑥𝑠2

𝑎𝑛ℎ(𝑥𝑠3)
𝑥𝑠4 ]

 
 
 
 

, ℎ2 = 𝑥𝑠, 𝐾12 = [
𝐼
0
]     (26) 

 

The vector and matrix functions of the 

system (23) are of appropriate dimension. 

 

 Theorem 2. Assumptions 3-5 and 

hypothesis 1 satisfied under the following 

functions 

 

𝑉(𝑥𝑠, 𝑡) =
1

2
𝑥𝑠1
𝑇 (𝐾 + 𝐾 𝐾𝑝1)𝑥𝑠1 +

1

2
𝑥𝑠2
𝑇 𝑀(𝑥𝑠1 + 𝑞𝑑)𝑥2 + 𝛽𝑡𝑎𝑛ℎ(𝑥𝑠1)

𝑇𝑀(𝑥𝑠1 +

𝑞𝑑)𝑥𝑠2 +
1

2
𝑥𝑠3
𝑇 𝐾𝑝2𝑥𝑠3 +

1

2
𝑥𝑠4
𝑇 𝐽𝑥𝑠4 +

𝛾𝑡𝑎𝑛ℎ(𝑥𝑠3)
𝑇𝐽𝑥𝑠4                                          (27) 

 

𝐹(𝑥𝑠) = 𝜖 tanh (𝑥𝑠1)
𝑇 tanh(𝑥𝑠1) + 𝜖 𝑥𝑠2

𝑇 𝑥𝑠2 +
𝜖 tanh (𝑥𝑠3)

𝑇 tanh(𝑥𝑠3) + 𝜖 𝑥𝑠4
𝑇 𝑥𝑠4             (28) 

 

 with 𝛽 > 0, 𝛾 > 0  and then  𝑉(𝑥𝑠, 𝑡) it 

will be defined positive for all 𝑥𝑠 ∈ ℝ
𝑛 and 

radially desacoted if and only if 

 

𝜆𝑚𝑎𝑥{𝐾𝑝2} > 𝛾
2𝜆𝑚𝑎𝑥{𝐽}, 

𝜆𝑚𝑖𝑛{𝐾𝑝2} > 𝛾
2𝜆𝑚𝑖𝑛{𝐽}.                              (29)                           

 

is fulfilled. In addition, the Hamilton-

Jacobi-Isaacs inequality is satisfied if 

 

𝜆𝑚𝑖𝑛{𝐾𝑝1} >
(0.5𝛽𝐾𝑐1‖𝑞̇𝑑‖+0.5𝐾ℎ2+0.5𝛽𝐾ℎ1+0.5𝑎1)

2+𝐾ℎ2+
1

𝛽
(𝜌2+𝜖)

𝑎2+𝛽2𝜆𝑚𝑎𝑥{𝑀(𝑥1+𝑞𝑑)}−𝛽
2√𝑛𝐾𝑐1−𝛽𝐾ℎ1−𝛽(𝜌

2+𝜖)
  

>
𝛽𝐾ℎ2+𝜌

2+𝜖−𝛽𝜆𝑚𝑖𝑛{𝐾}

𝛽𝜆𝑚𝑖𝑛{𝐾}
                                   (30) 

 

𝜆𝑚𝑖𝑛{𝐾𝑝1} >
𝛽𝜆𝑚𝑎𝑥{𝑀(𝑥1+𝑞𝑑)}+𝛽√𝑛𝐾𝑐1+𝐾ℎ1+𝜌

2+𝜖

𝜆𝑚𝑖𝑛{𝐾}
       (31)   

 
 

𝜆𝑚𝑖𝑛{𝐾𝑝2} >
0.25𝛾𝜆𝑚𝑎𝑥

2 {𝐾𝑑2}

𝜆𝑚𝑖𝑛{𝐾𝑑2}−𝛾𝜆𝑚𝑎𝑥{𝐽}−𝜌
2−𝜖

+
𝜌2+𝜖

𝛾
   (32) 

 

 

𝜆𝑚𝑖𝑛{𝐾𝑑2} > 𝛾𝜆𝑚𝑎𝑥{𝐽} + 𝜌
2 + 𝜖                 (33) 

 

 

 

where 𝑎1 = 𝛽𝜆𝑚𝑎𝑥{𝐾}𝜆𝑚𝑎𝑥{𝐾𝑑1},  𝑎2 =
𝛽𝜆𝑚𝑖𝑛{𝐾}𝜆𝑚𝑖𝑛{𝐾𝑑1}, 𝜖 > 0 it is a sufficiently 

small constant. So based on Theorem 1 the law 

of control by feedback of states is 

 

𝑢𝑠(𝑡) = 𝛼2(𝑥𝑠, 𝑡) = −
1

2
[𝛾 tanh(𝑥𝑠3) + 𝑥𝑠4]    (34) 

 

stabilizes the equilibrium point in 

asymptotic and global form of the disturbance-

free system (23) and (34) will ensure that the 

gain L2 of the closed-loop system is less than 𝛾. 

 

 Proof. It is proposed to separate the 

inequality of Hamilton-Jacobi-Isaacs (12) into 

two parts, that is to say 

 

𝐻(𝑥𝑠, 𝑡) = 𝐻1(𝑥𝑠, 𝑡) + 𝐻2(𝑥𝑠, 𝑡)  
 

Where 

 

𝐻1(𝑥𝑠, 𝑡) =
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥𝑠
𝑓 + ℎ1

𝑇ℎ1 + 𝐹  

𝐻2(𝑥𝑠, 𝑡) = 𝛾
2𝛼1

𝑇𝛼1 − 𝛼2
𝑇𝛼2  

 

 𝐻1(𝑥𝑠, 𝑡) , 𝐻2(𝑥𝑠, 𝑡) are developed and 

we get their maximum levels 

 

𝐻1(𝑥𝑠, 𝑡) ≤ 𝛽𝜆𝑚𝑎𝑥{𝑀(𝑥𝑠1 + 𝑞𝑑)}‖𝑥𝑠2‖
2 −

𝜆𝑚𝑖𝑛{𝐾}𝜆𝑚𝑖𝑛{𝐾𝑑1}‖𝑥𝑠2‖
2 − 𝛽𝜆𝑚𝑖𝑛{𝐾 +

𝐾 𝐾𝑝1}‖tanh (𝑥𝑠1)‖
2 + 𝛾𝜆𝑚𝑎𝑥{𝐽}‖𝑥𝑠4‖

2 −

𝜆𝑚𝑖𝑛{𝐾𝑑2}‖𝑥𝑠4‖
2 −

𝛾𝜆𝑚𝑖𝑛{𝐾𝑝2}‖tanh (𝑥𝑠3)
𝑇‖2 + 𝛽𝐾𝑐1‖𝑥𝑠2‖

2 +

𝛽𝐾𝑐1‖𝑞̇𝑑‖‖tanh(𝑥𝑠1)‖‖𝑥𝑠2‖
2 +𝐾ℎ1‖𝑥𝑠2‖

2 +
𝐾ℎ2‖tanh(𝑥𝑠1)‖‖𝑥𝑠2‖ +
𝛽𝐾ℎ1‖tanh(𝑥𝑠1)‖‖𝑥𝑠2‖ +
𝛽𝐾ℎ2‖tanh(𝑥𝑠1)‖

2 +
𝛽𝜆𝑚𝑎𝑥{𝐾}𝜆𝑚𝑎𝑥{𝐾𝑑1}‖tanh(𝑥𝑠1)‖‖𝑥𝑠2‖ +
𝛾𝜆𝑚𝑎𝑥{𝐾𝑑2}‖tanh(𝑥𝑠3)‖‖𝑥𝑠4‖ + (𝜌

2 +
𝜖)‖tanh (𝑥𝑠1)‖

2 + (𝜌2 + 𝜖)‖𝑥𝑠2)‖
2 +

(𝜌2 + 𝜖)‖tanh (𝑥𝑠3)‖
2 + (𝜌2 + 𝜖)‖𝑥𝑠4)‖

2     
 

The inequalities of vector functions of 

secant and hyperbolic tangent and their 

properties were considered (Kelly, Santibañez 

and Loria, 2005). The previous inequality can 

be represented as follows 

 

𝐻1(𝑥𝑠, 𝑡) ≤

−

[
 
 
 
‖tanh (𝑥𝑠1)‖

‖𝑥𝑠2‖

‖tanh (𝑥𝑠3)‖

‖𝑥𝑠4‖ ]
 
 
 
𝑇

𝑄1

[
 
 
 
‖tanh (𝑥𝑠1)‖

‖𝑥𝑠2‖

‖tanh (𝑥𝑠3)‖

‖𝑥𝑠4‖ ]
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𝑄1 = [

𝑞1_11 𝑞1_12 0 0
𝑞1_12 𝑞122 0 0

0
0

0
0

𝑞1_33
𝑞1_34

𝑞1_34
𝑞1_44

]            (35) 

 

where: 

𝑞1_11 = 𝛽𝜆𝑚𝑖𝑛{𝐾 + 𝐾 𝐾𝑝1} − 𝛽𝐾ℎ2 − 𝜌
2 − 𝜖  

𝑞1_12 = −0.5𝛽𝐾𝑐1‖𝑞̇𝑑‖ − 0.5𝐾ℎ2 − 0.5𝛽𝐾ℎ1 −
0.5𝛽𝜆𝑚𝑎𝑥{𝐾}𝜆𝑚𝑎𝑥{𝐾𝑑1}  
𝑞1_22 = 𝜆𝑚𝑖𝑛{𝐾}𝜆𝑚𝑖𝑛{𝐾𝑑1} − 𝛽𝜆𝑚𝑎𝑥{𝑀(𝑥𝑠1 +

𝑞𝑑)} − 𝛽𝐾𝑐1√𝑛 − 𝐾ℎ1 − 𝜌
2 − 𝜖   

𝑞1_33 = 𝛾𝜆𝑚𝑖𝑛{𝐾𝑝2} − 𝜌
2 − 𝜖  

𝑞1_34 = −0.5𝛾𝜆𝑚𝑎𝑥{𝐾𝑑2}  
𝑞1_44 = 𝜆𝑚𝑖𝑛{𝐾𝑑2} − 𝛾𝜆𝑚𝑎𝑥{𝐽} − 𝜌

2 − 𝜖  

 

 To determine if 𝑄1 is defined positive, 

Sylvester's theorem is applied in (35), and it is 

determined that, by selecting 𝐾𝑝1, 𝐾𝑝2, 𝐾𝑑1, 𝐾𝑑2  

such that they satisfy inequalities (30) to (33) 

accordingly 𝐻1(𝑥𝑠, 𝑡) it will be a negative 

definite function. 

 

In the analysis of 𝐻2(𝑥𝑠, 𝑡) the functions 

are involved 𝛼1(𝑥𝑠, 𝑡) and 𝛼2(𝑥𝑠, 𝑡) as a result 

of the proposed Lyapunov function, that is to 

say 

 

𝛼1(𝑥𝑠, 𝑡) =
1

2𝛾2
[𝛽 tanh(𝑥𝑠1) + 𝑥𝑠2]             (36) 

 

𝛼2(𝑥𝑠, 𝑡) =
1

2
[𝛾 tanh(𝑥𝑠3) + 𝑥𝑠4]               (37) 

 

Developing 𝐻2(𝑥𝑠, 𝑡) you have to 

 

𝐻2(𝑥𝑠, 𝑡) ≤
1

4𝛾2
‖𝑥𝑠2‖

2 +

𝛽

2𝛾2
‖tanh(𝑥𝑠1)‖‖𝑥𝑠2‖ +

𝛽2

4𝛾2
‖tanh (𝑥𝑠1)‖

2 −
1

4
‖𝑥𝑠4)‖

2 +
𝛾

2
‖tanh(𝑥𝑠3)‖‖𝑥𝑠4‖ −

𝛾2

4
‖tanh (𝑥𝑠3)‖

2  

      

𝐻2(𝑥𝑠, 𝑡) ≤

−
1

4

[
 
 
 
‖tanh (𝑥𝑠1)‖

‖𝑥𝑠2‖

‖tanh (𝑥𝑠3)‖

‖𝑥𝑠4‖ ]
 
 
 
𝑇

𝑄2

[
 
 
 
‖tanh (𝑥𝑠1)‖

‖𝑥𝑠2‖

‖tanh (𝑥𝑠3)‖

‖𝑥𝑠4‖ ]
 
 
 

        (38) 

 

𝑄2 =

[
 
 
 
 
 
−1

𝛾2
−𝛽

𝛾2
0 0

−𝛽

𝛾2
−𝛽2

𝛾2
0 0

0
0

0
0

1
−𝛾

−𝛾

𝛾2 ]
 
 
 
 
 

    

 

 

 Matrix 𝑄2 will be undefined for any 

positive constant γ and β. Finally, the inequality 

of Hamilton-Jacobi-Isaacs 𝐻(𝑥𝑠, 𝑡) it will be a 

negative definite function if 

 

𝜆𝑚𝑖𝑛{𝑄1} +
1

4
𝜆𝑚𝑖𝑛{𝑄2} > 0.                        (39) 

 

1.3. Pendulum of a degree of freedom with 

rotational and flexible articulation 

 

Be the mechanical system with flexible 

articulation defined as: 

 

𝑚𝑞̈ + 𝑔 sin(𝑞) + 𝐾(𝑞 − 𝜃) = 𝑤𝑢               (40) 

𝐽𝜃̈ − 𝐾(𝑞 − 𝜃) = 𝜏 + 𝑤𝑚  

 

 where the parameters of the plant and 

controller are shown in the following tables. 
 

Description Notation Value Unit 

Mass of the joint m 1.0001 Kg 

Constant stiffness K 100 Nm/rad 

Moment of Inertia of the 

engine 

J 0.02 Kg m 

Moment of Inertia of the 

motor Gravitational constant 

g 9.81 m/s 

 

Table 1 Parameters of the pendulum of a degree of 

freedom 

Source: Self Made 

 

 The position, the speed of the actuator 

and the articulation are available for the 

measurement at all times. 
 

Parameters Value 

𝛾 7 

𝜖 0.01 

𝜌 0.1 

𝛽 8 

𝐾ℎ2 44.7747 

𝐾′ 10.791 

𝐾𝑔 10.791 

𝐾𝑝1 5.1 

𝐾𝑝2 3.73 

𝐾𝑑1 0.09 

𝐾𝑝2 0.18 

Γ 5 

 

Table 2 Parameters of the CGEV 

Source: Self Made 
 

 The desired reference signals are defined 

as: 𝑞𝑑(𝑡) = 𝜋 sin (1.885𝑡), 𝜃𝑑(𝑡) = 𝑞𝑑(𝑡) +
𝐾−1𝑔 sin (𝑞𝑑) and the initial condition is placed 

in 𝑥(0) = [
1

2
𝜋, 0,

1

2
𝜋, 0]

𝑇

, finally the system is 

disturbed with 𝑤𝑚(𝑡) = 𝜋 sin(10𝜋𝑡) y 

𝑤𝑢(𝑡) = 𝜋 𝑐𝑜𝑠(20𝜋𝑡). 
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Figure 2 Performance of the system in closed loop (14) 

and (18), (a) Joint position and desired position, (b) 

Position of the actuator and position of the desired 

actuator 

Source: Self Made 

 

 
 

Figure 3 System performance in closed loop (14) and 

(18) without the non-linear control H∞, (a) Articular 

position and desired position, (b) Position of the actuator 

and position of the desired actuator 

Source: Self Made 

 

Results 

 

In Section I, the disturbed non-linear and time-

varying plant was proposed, as well as the 

CGEV in which the theory is developed. 

Section II provides the controls that make up 

the CGEV in general for any system mentioned 

at the beginning. of the present paragraph, the 

controllers involved in the CGEV are the 

control by integral sliding mode (5) and control 

H∞ non-linear (13), in section III the CGEV 

applied to a robot manipulator of l degrees of 

freedom with rotational articulations and with 

the elasticity effect in the presence of coupled 

and uncoupled perturbations, in the same way 

we present theorem 2 that gives solution to the 

non-linear H∞ control (37) that is part of the 

CGEV, finally we analyze the proposed control 

in a pendulum of a degree of freedom with the 

rotational and flexible articulation and in the 

presence of coupled and uncoupled 

disturbances, the closed loop system (14) and 

(18) is analyzed with the help of M atLab / 

Simulink.  

The performance of the aforementioned 

system is presented in figures 2 and 3, in figure 

2 there is an underdamped result of the 

elasticity effect in the articulation and of the 

coupled and uncoupled disturbances to which 

the system was exposed, such effect and the 

disturbances were attenuated as time tends to 

infinity. Figure 3 shows a very marked 

underdamping in the position of the actuator, 

this is due to the fact that the non-linear 

controller H_∞ of the CGEV was eliminated, 

and the effects of the uncoupled perturbation 

take a little longer to be attenuated by the 

control discontinuous. 

 

Conclusions 

 

A variable structure global controller composed 

of integral sliding mode control and non-linear 

H∞ control was proposed for non-linear, 

subacted and non-autonomous systems in the 

presence of coupled and uncoupled 

perturbations, the theory was validated with the 

regulation problem of movement for a robot 

manipulator of l degrees of freedom with 

rotational unions and with the effect of 

elasticity in each of them. In the proposed 

control structure, the integral sliding mode 

control keeps the path of the system in closed 

loop within the sliding mode and rejects the 

coupled disturbances and the control H∞ in the 

sliding mode attenuates the uncoupled 

disturbances. 
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