

Interdisciplinary Congress of Renewable Energies - Industrial Maintenance - Mechatronics and Informatics Booklets

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Neural networks to predict academic dropout in engineering

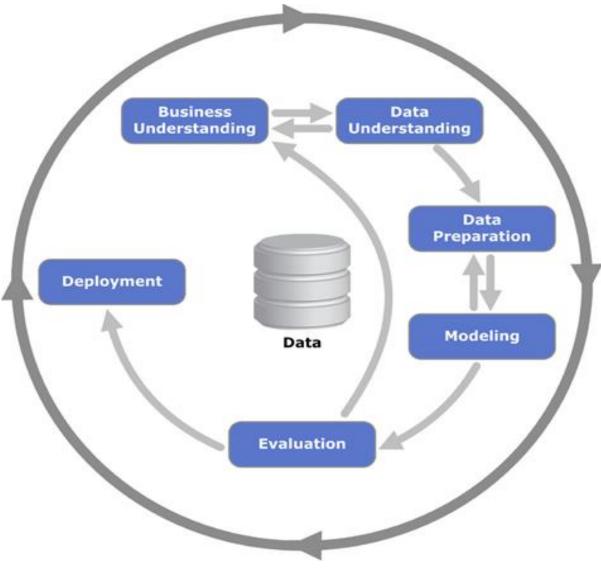
Authors: CENTURIÓN-CARDEÑA, Humberto José, CANO-BARRÓN, Danice Deyanira, SANDOVAL-GÍO, Jesús y ZAPATA-GONZÁLEZ, Alfredo

Editorial label ECORFAN: 607-8695 BCIERMMI Control Number: 2020-04 BCIERMMI Classification (2020): 211020-0004		Pages: 14 RNA: 03-2010-032610115700-14			
ECORFAN-México, S.C.		Holdings			
143 – 50 Itzopan Street		Mexico	Colombia	Guatemala	
La Florida, Ecatepec Municipality		Bolivia			
Mexico State, 55120 Zipcode	www.ecorfan.org	DOIIVIA	Cameroon	Democratic	
Phone: +52 55 6 59 2296		Spain	El Salvador	Republic	
Skype: ecorfan-mexico.s.c.					
E-mail: contacto@ecorfan.org		Ecuador	Taiwan	of Congo	
Facebook: ECORFAN-México S. C.		Dama			
Twitter: @EcorfanC		Peru	Paraguay	Nicaragua	

Introduction

- Methodology
- Results
- Conclusions
- References

Introduction


The strategies oriented to efficiently storage of data and search not evident patterns have become an important area in computer science (Riquelme, Ruiz, & Gilbert, 2006)

Educational Data Mining is a paradigm to design models, tasks, methods and algorithms to explore data from educational environments to find patterns and make predictions of the behavior and achievement of students, evaluation of functionality and educational applications in conventional, open and remote environments (Luan, 2002)

Introduction

Predicting student success is crucial for higher education because the quality of the teaching and learning process is strongly related to the their ability to respond to students needs (Al-Twijri & Noamanb, 2015)

This study focuses on the analysis of context data and the results of the EXANI-II skills assessment, which is a standard instrument used in Mexico to identify the academic and personal status of higher education applicants from 2015 to 2018 from Motul Higher Technological Institute

Figura 1 CRISP-DM life cicle. *Fuente: (Chapman, Khabza, & Shearer, 2000)*

- ID sources of information in the organization and the type of files that are available to use
 - Join all the different useful data bases identified (Python)
- To avoid overfitting and underfitting select the variables with more significance to the independent variable
- Select the neural network model according to thumb rules
- Evaluate the prediction efficiency of the models and select the best model for deployment

Neural network design process:

- The number of layers considered are one or two, one can approximate any function that maps continuously from one finite space to another, while two can approximate any mapping with a certain level of efficiency (Heaton, 2008)
- Regarding the number of neurons, the rule of the average number of inputs plus the output was considered
- The sigmoid or logistic function was used since its outputs values range between 0 and 1

The principal component analysis (PCA) aims to replace redundant attributes with new attributes that adequately integrate the information originally contained

Atributo	Clave	Importancia
1	rezago	81.4
2	prom_bac	14.2
3	dan_reqc	8.9
4	fecha_apli	7.5
5	ipan	7.5
6	ipma	7.2
7	iele	6.9
8	dan_malf	6.3
9	dan_eir	6
10	dan_ofi	5.9
11	icne	5.7
12	fre_cde	3.8
13	vac_rm	3.5
14	fre_tsc	3.4
15	dan_mft	3.3
16	icle	3.3
17	edad_ingreso	3
18	fre_sme	2.5
19	hrs_trab	2.5
20	ser	2.1

Tasa de aprendizaje	Atributos de entrada	Mínimo de neuronas en la capa oculta	
	20	11	
.01	15	8	
	10	6	
.001	20	11	
	15	8	
	10	6	
.05	20	11	
	15	8	
	10	6	

Once the parameters for the tests were decided, the databases were generated and the learning process was run, with a test database of 15% of the original database whose records were selected randomly

Tasa de aprendizaje	Atributos de entrada	Matr	Matriz de confusión		
	20		0	1	
		0	61	27	
		1	7	23	
.001	15	0	72	4	
	15	1	39	3	
	10	0	88	1	
		1	29	0	
	20	0	48	36	
	20	1	9	25	
.01	15	0	61	24	
.01	15	1	6	27	
	10	0	67	23	
	10	1	6	22	
	20	0	61	21	
	20	1	9	27	
.05	15	0	53	28	
	15	1	10	27	
	10	0	58	31	
		1	3	26	

Tasa de aprendizaje	Atributos de entrada	Exactitud	Precisión	Recall	F
.001	20	0.7119	0.4600	0.7667	0.5750
	15	0.6356	0.4286	0.0714	0.1224
	10	0.7458	0.0000	0.0000	0.0000
.01	20	0.6186	0.4098	0.7353	0.5263
	15	0.7458	0.5294	0.8182	0.6429
	10	0.7542	0.4889	0.7857	0.6027
.05	20	0.7458	0.5625	0.7500	0.6429
	15	0.6780	0.4909	0.7297	0.5870
	10	0.7119	0.4561	0.8966	0.6047

Conclusion

The most efficient model was the one with 15 variables with a learning rate of .01, with an effectiveness of 74.58% and an F index of .6429, which makes the model solid enough but will require the introduction of new variables seeking that the identification be more efficient so that it could help those interested in a more timely manner

This knowledge model will be implemented in the Counseling System that the Institute has developed in previously to provide the professors and Counseling chief with an academic panorama expected of the students and to be able to make the most efficient and punctual monitoring process of those students that are more likely to drop out school.

References

Al-Twijri, M., & Noamanb, A. (2015). A New Data Mining Model Adopted for Higher Institutions. *Procedia Computer Science*(65), 836 – 844.

Luan, J. (2002). Data mining and its applications in higher education. *Journal of New Directions for institutional Research*, 17-36.

Riquelme, J., Ruiz, R., & Gilbert, K. (2006). Minería de Datos: Conceptos y Tendencias. *Revista Iberoamericana de Inteligencia Artificial, 10*(10), 11-18.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/ booklets)