

2nd International Symposium on Master Engineering Booklets

RENIECYT - LATINDEX - EBSCO - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Numerical analysis of hydrodynamic behavior of a magnetorheological fluid

Author: ORTEGA-ROMERO, Daysi Flor de Liz

Editorial label ECORFAN: 607-8695 BIMES Control Number: 2022-06 BIMES Classification (2022): 231122-0006		RN	A: 03-2010-(Pages: 2)32610115700-1	22 4
ECORFAN-México, S.C.			Holdings		
143 – 50 Itzopan Street		Mexico	Colombia	Guatemala	
La Florida, Ecatepec Municipality Movico Stato 55120 Zipcodo		Bolivia	Cameroon	Democratic	
Phone: +52 55 6159 2296	www.ecorfan.org	C	Cameroon		
Skype: ecorfan-mexico.s.c.		Spain	El Salvador	Republic	
E-mail: contacto@ecorfan.org		Ecuador	Taiwan	of Congo	
Facebook: ECORFAN-México S. C.		_		U U	
Twitter: @EcorfanC		Peru	Paraguay	Nicaragua	

Resumen

- □ Análisis numérico del comportamiento de fluidos magnetoreológicos bajo la influencia de diferentes magnitudes de campo magnético.
 - Propiedades de estos fluidos se ven afectadas y modificadas mediante la aplicación de dichos campos magnéticos.
- Se toma:
 - ✓ Geometría de forma capilar (diámetro de 20 y 30 mm, longitud 300 mm).
 - ✓ FMR: Basonetic 5030.
 - ✓ Campo perpendicular a la dirección del fluido (de 0.01 a 0.5 Teslas).
 - ✓ Velocidad de entrada del fluido → 1.31m/s.
 - ✓ Modelo de viscosidad de Herschel-Bulkley.
- Se reporta:
 - Perfil de velocidades.
 - Variaciones de presión en función del aumento de la intensidad del campo magnético.

Contenido

• FMR: fluido inteligente que al someterlo a un campo magnético, el fluido aumenta su viscosidad, hasta convertirse en un sólido viscoelástico. Esta compuesto por un fluido base y por partículas metálicas.

Sistema de clutches

Amortiguadores

Edificios y puentes

Figura 3. Aplicaciones no médicas

Dispositivos hápticos

Terapia contra el cáncer

Simposio Internacional d Maestría en Ingeniería

Prótesis y Rehabilitación

Li S, Meng W, Wang Y. (Wang, Li & Meng. 2017)

Acoplamiento fluido-sólido en un disco de frenado.

Modelo Herscher-Bulkley.

Correlación entre ecuaciones del campo y térmicas.

Software Multiphysics.

Errores máximos del 5% (experimental vs numérica).

Ali El Wahed, Hao Chen Wang (Wahed & Wang 2019)

Amortiguador para hombro humano.

Método de elementos finitos (FEM) con modelo de Herscher-Bulkley.

ANSYS/Fluent.

Errores entre 5-7% (experimental vs numérica).

Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser (Elsaady, Oyadiji & Naseer. 2020)

Pistón amortiguador MR.

Archivo UDF en lenguaje C++ y compilamiento en ANSYS/Fluent.

Diferentes aplicaciones que adopten el comportamiento del fluido viscoplástico.

¿Qué se puede hacer con el modelo?

Permite personalizar ANSYS FLUENT para que se ajuste a necesidades particulares de modelado. Algunas aplicaciones que se pueden programar son:

- Personalizar las condiciones de contorno, los términos fuente, las velocidades de reacción, las propiedades de los materiales, etc.
- Personalizar ecuaciones físicas
- Ajustar funciones
- Ejecutar funciones bajo demanda
- Inicialización de la solución

NO se cuenta con una herramienta computacional que analice en su totalidad un FMR.

Simposio Internacional d Maestría en Ingeniería

Geometría y condiciones de frontera del volumen del fluido

Figura 6. Geometría y condiciones de frontera del volumen del fluido.

Análisis de sensibilidad de malla

Tabla 1. Información de la convergencia de la malla.

Diámetro (mm)	Largo (mm)	Número de malla	Número de nodos	Número de Reynolds	Tipo de flujo	Velocidad promedio (m/s)
		la	24000	0.03	Laminar	1.6076
		2a	25780	0.04	Laminar	2.0096
		3a	106600	0.13	Laminar	6.6433
		4a	553200	0.12	Laminar	5.8262
		5a	127200	0.04	Laminar	2.2310
10		ба	1279200	0.73	Laminar	36.9749
10		7 a	223500	0.05	Laminar	2.6158
		Sa	302700	0.06	Laminar	3.0246
		9a	444000	0.08	Laminar	4.1484
		10a	739500	0.36	Laminar	18.0396
	300	11a	952800	0.72	Laminar	36.5436
		12a	1193100	0.73	Laminar	37.0033
		1ь	127200	0.16	Laminar	5.4747
		2ь	223500	0.19	Laminar	6.5178
		3Ъ	302700	0.23	Laminar	7.6101
		4b	444000	0.33	Laminar	10.9529
15		5b	553200	0.48	Laminar	16.2519
		бЪ	739500	1.02	Laminar	34.3044
		7Ъ	952800	1.11	Laminar	37.3872
		8b	1110000	1.11	Laminar	37.3086
		9Ь	1279200	1.10	Laminar	37.1826

 $Re = \frac{Fuerzas \ inerciales}{Fuerzas \ viscosas} = \frac{\rho Dv}{\mu}$

Donde:

 ρ = densidad del fluido (kg/m³)

D = diámetro interno (m)

v = velocidad del fluido (m/s)

 μ = viscosidad dinámica (kg/ms)

$$R_m = \mu_0 \sigma \rho R e$$

Donde:

 R_m = Número de Reynolds Magnético μ_0 = Permeabilidad magnética (T m/A) σ = Conductividad eléctrica ($\Omega^{-1} \cdot m^{-1}$) ρ = Viscosidad ($Pa \cdot s$) Re = Número de Reynolds

 $R_m = 0.7415$

Flujo Laminar Re < 2000

Flujo de Transición $2000 \le \text{Re} \le 3000$

Flujo Turbulento Re > 3000

Propiedades del fluido magnetoreológico

Basonetic 5030				
Densidad (g/cm ³)	1.8			
Viscosidad (Pas, medido en 40	0.000			
°C, γ=99.55 1/s)	0.909			
Concentración (%)	20			
Fluido base	Poliolefina tipo alfa			
Partícula magnetizable	Polvo de hierro carbonilo			
Rango de temperatura (°C)	-40 °C a +120 °C			

Tabla 2. Propiedades físicas de los fluidos BASONETIC 5030 (Gedik E., 2017)

Incremento del campo magnético

Figura 7. Incremento del campo magnético

Ecuaciones gobernantes

Las ecuaciones de masa y momento del movimiento constante de un fluido MR incompresible bajo un campo magnético en una tubería cilíndrica son:

$$\nabla V = 0 \longrightarrow$$
 Ecuación de continuidad $\rho \frac{DV}{Dt} = -\nabla P + \mu \Delta V \longrightarrow$ Ecuación de Navier Stokes

Donde: $\nabla P \rightarrow$ Gradiente de presión ($\partial P/\partial x$) (Pa/m) $\rho \rightarrow$ Densidad del fluido (kg/m ³) $\mu \rightarrow$ Viscosidad dinámica del fluido (kg/ms)	 Donde: σ → Conductividad eléctrica del fluido E → Magnitud del campo eléctrico V → Vector de velocidad de flujo promedio
μ 🥆 viscosidad dillamica del fidido (kg/ilis)	B → Inducción del campo magnético

Consideraciones

Se selecciona el modelo viscoso de Herschel-Bulkley para el fluido MR (Mitsoulis).

 $\tau = \tau_0 + K(\gamma)^n$

Esfuerzo cortante inicial: este esfuerzo se calcula en relación con el campo magnético (Lord Corporation).

 $\tau_0(B) = C \cdot 2.717 \times 10^5 \cdot \Psi^{1.5239} \tanh(6.33 \times 10^{-6}B)$

Resultados:

			BASE	NOTIC 5030					
В	0	0.02	0.06	0.08	0.1	0.2	0.3	0.4	0.5
τ ₀	0	2.9605	8.8815	11.8419	14.8024	29.6049	44.4073	59.2097	74.0121

Donde:	
$K \rightarrow$ Índice de consistencia (kg/ms)	
$n \rightarrow$ Índice de flujo (exponente de curvatura)	
$\tau_0 \rightarrow$ Esfuerzo cortante inicial (Pa)	
$\gamma \rightarrow$ Tasa critica de cizallamiento (1/s)	

Donde:	
$\tau_0 \rightarrow \text{Esfuce}$	erzo cortante inicial (Pa)
$C \rightarrow Consta$	ante
$\Psi \rightarrow$ Fracci	ón volumétrica de las partículas (%)
$B \rightarrow Inducc$	ción del campo magnético (T)

UDF para perfil de velocidades

	Define Solve Adapt Surface Displa	y Report Parallel View Help			
	General	↓ 洗 腊 - □ - /2 - ■ - @ -	🔁 🔊 \Lambda 🥅 😫		
	Models	eral	1: Mesh		
	Materials				
	Phases				
(Cell Zone Conditions	Scale Check Report Quality			
<pre>#include "udf.h"</pre>	Boundary Conditions	Display		🔽 Velocity Inlet	X
F	Operating Conditions	r		• ···	
DEFINE PROFILE(inlet 3D profile.thread.nv)	Mesh Interfaces	e Velocity Formulation		Zone Name	
······································	Dynamic Mesh	Density-Based ORelative		inlet	
\mathbf{N}	Mesh Morpher/Optimizer				
real x[s]; //matriz global SD con S dimensiones (x,y,z) x>x[0], y>x[1], z>x[2] s	Mixing Planes	steady		Momentum Thermal Radiation Species DPM Multiphase UDS	
real R = 0.01; //Radio (m)	Turbo Topology	Transient			1
real Um = 1.31; //Velocidad máxima s	Injections			Velocity Specification Method Magnitude, Normal to Boundary	\sim
face t f; //Cara en 3D o borde en 2D (inlet b.c's)	DTRM Rays	avity Units		D. G	
begin f loop(f,thread)	Shell Conduction Manager			Absolute	\sim
	Custom Field Functions			Velocity Magnitude (m/s)	
F (FNTPOID/w f thread)	Parameters		Mesh		<u> </u>
P DEDITION (x, 1, chicad);	Profiles			Supersonic/Initial Gauge Pressure (pascal)	
<pre>F_PROFILE(I,thread,nv)=Um*(1-(X[1]*X[1]+X[2]*X[2])/(K*R));</pre>	Units		Setting z	udfinlet 30 profile	
}	User-Defined >	Functions > Inte	erpreted		
end_f_loop(f,thread)		Function Hooks Cor	mpiled		
}		Execute on Demand Ma	nage	OK Cancel Help	
		Scalars	Setting wa		
		Memory	Setting ou	1	
			Done.		
		1D Coupling	Preparing	1	
		ib couping	Done.		

Figura 8. Interpretación o compilación de UDF perfil de velocidades .

Velocidades a lo largo de la tubería

Figura 9. Estudio de convergencia de mallas, a) d=20mm no convergente, b) d=20mm convergente y c) d=30mm convergente.

3. Resultados

UDF para perfil de velocidades

SIN UDF

Figura 10. Perfil de velocidades.

Figura 11. Perfil de velocidad aplicando modelo viscoso. a) d=20mm y b) d=30mm.

Simposio Internacional d Maestría en Ingeniería

Figura 12. Vectores numéricos de velocidad bajo diferentes intensidades de campo magnético para d=20 mm.

Figura 13. Vectores numéricos de velocidad bajo diferentes intensidades de campo magnético para d=30 mm.

Velocity Contour 1	0 T	Velocity Contour 1	0.1 T
1.266 1.187 1.108 1.029 0.949 0.870 0.791		1.266 1.187 1.108 1.029 0.949 0.949 0.979	
0.712 0.633 - 0.554 - 0.475		0.712 0.633 0.554 0.475	
0.330 0.316 0.237 0.158 0.079 0.000		0.336 0.316 0.237 0.158 0.079 0.000	
[m s^-1]		[m s^-1]	
Velocity Contour 1	0.3 T	Velocity Contour 1	0.5 T
Velocity Contour 1 1.266 1.187 1.108 1.029 0.949	0.3 T	Velocity Contour 1 1.266 1.187 1.108 1.029 0.949	0.5 T
Velocity Contour 1 1.266 1.187 1.108 1.029 0.949 0.870 0.791 0.712 0.633 0.554 0.475	0.3 T	Velocity Contour 1 1.266 1.187 1.108 1.029 0.949 0.870 0.791 0.712 0.633 0.554 0.475	0.5 T
Velocity Contour 1 1.266 1.187 1.108 1.029 0.949 0.870 0.791 0.712 0.633 0.554 0.475 0.396 0.316 0.237 0.158 0.009	0.3 T	Velocity Contour 1 1.266 1.187 1.108 0.299 0.949 0.870 0.791 0.712 0.633 0.554 0.475 0.396 0.316 0.237 0.158 0.009	0.5 T

Figura 14. Contornos de velocidad aplicando en el modelo viscoso la intensidad del campo magnético.

Variaciones de presión

Figura 15. Variaciones de presión en función del aumento de la intensidad del campo magnético.

Normalización del perfil de velocidad

a)

Figura 16. Normalización del perfil de velocidad. a) d=20mm y b) d=30mm.

4. Conclusiones

El aumento de la intensidad del campo magnético, ha causado:

✓ Disminución de velocidades de flujo para el fluido MR.

Aumento de presión.

Ya que al aplicar un campo magnético, las partículas tienden a polarizarse y alinearse con el campo, disminuyendo la distancia entre moléculas y, en consecuencia, se está aumentando la resistencia de las moléculas a desplazarse. Así, la viscosidad de estos fluidos aumenta en función de la intensidad del campo aplicado.

5. Referencias

El Wahed AK and Wang HC (2019) Performance Evaluation of a Magnetorheological Fluid Damper Using Numerical and Theoretical Methods With Experimental Validation. Frontiers in Materials 6: 27. doi:10.3389/fmats.2019.0002

Elsaady W, Oyadiji SO and Nasser A (2020) A one-way coupled numerical magnetic field and CFD simulation of viscoplastic compressible fluids in MR dampers. International Journal of Mechanical Sciences 167: 105265. doi:10.1016/j.ijmecsci.2019.105265

Gedik, E. (2017) Experimental Investigation of Magnetohydrodynamic Flow in Cıcrcular Pipes and Numerical Analysis With Computational Fluid Dynamics. Journal of Applied Fluid Mechanics. 10. 801–11. doi:10.18869/acadpub.jafm.73.240.26830.

Li S, Meng W, Wang Y (2017) Numerical and experimental studies on a novel magneto-rheological fluid brake based on fluid–solid coupling. Science Progress. 103(1). doi:10.1177/0036850419879000

imposio Internacional d Maestría en Ingeniería

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BIMES is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/booklets)

© 2009 Rights Reserved | ECORFAN, S.C. (ECORFAN®-México-Bolivia-Spain-Ecuador-Cameroon-Colombia-Salvador-Guatemala-Paraguay-Nicaragua-Peru-Democratic Republic of Congo-Taiwan)