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Abstract

In this paper, an alternative method to characterize a hydrodynamic bearing is presented. Based on the
Reynolds’ general lubrication equation, a perturbation is made on the center of the journal in order to
partial pressures, so that be able to manage them to determine both the stiffness and damping dynamic
coefficients. It is done the calculation for a classical case and it is generalized to situations that involve
external excitations. The dynamic coefficients are gotten in an analytical way and they are plotted as a
function of the balance eccentricity. The methodology presented in this document is of great value
because it can be adapted for complex cases to get quite acceptable numerical solutions.
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Introduction

The equations of motion of a system-rotor
bearings contain coefficients corresponding to
the lubricant film. These parameters change
with the position having the shaft relative to the
bearing center and the rotation speed. That's
why the dynamic behavior is always heavily
influenced by the values they can take these
coefficients. It is in the literature as the
operation speed increases, one of the stiffness
coefficients can take negative values depending
on its magnitude and the system could
instability [1].

To study the behavior of the fluid in the
hydrodynamic bearings Reynolds equation is
used, which is a simplification of the Navier-
Stokes equations for Newtonian fluids type.
Reynolds equation relates the fluid pressure in
the bearing with axial and circumferential
coordinates, so it is possible to obtain the
pressure field. It is not possible to analytically
solve the Reynolds equation, but approaches are
available depending on the length / diameter of
the bearing (L / D) ratio. However, it is possible
to determine the dynamic condition of the
lubricant film taking the linear behavior of the
pressure field and forces it along. Disturbing
the equilibrium position of the stump to find
modifying pressure increases the dynamic
properties of the support and highlight the
effect of stiffness and damping of the oil film.

Nomenclature

C:  Clear radial bearing

cij:  Damping coefficients

D:  Diameter of the bearing

e:  Eccentricity

H:  Thickness o the lubricant film
h:  Dimensionless film thickness
kij:  Stiffness coefficients

L:  Length of the bearing

N:  Operating speed

p:  Pressure of the lubricant film
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Sommerfeld number

Axial Cartesian coordinate

Angle of attitude.

Circunferential coordinates of bearing
Dimensionless exxentricity, e=e/C
Operating speed.

Dynamic or Absotlute viscosity.
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Development

The model describing the function of pressure
in hydrodynamic bearings is the Reynolds
equation; such an equation can be written
generally as [2]:

1 0 (Hap), o(H ap|_wdH o
200 ot

R? 00\ 121100 ) 07\124 02

(1

This equation can be written in dimensionless
form using the following parameters:
H =Ch=C[1+£cos@ — ¢)]

2)

L R 2
——7 sp=uN| 2| p >
Z_ZZ p=u [ jp

o =2zN (3)

Substituting this in equation (1) 1is
obtained in dimensionless form as:

— 2 —
2 (wE)(B) 2 %P) e Hemch
L) oz 0z 00 o ot

“4)
With the boundary conditions:

p=oforz-z1/2y (@]:0 para z=0.
oz

Note that: 9=0+¢ , h=1+eccos@ —¢)-

In Figure 1 a given rotor (stump in the
bearing) illustrated position, the parameters
included in Reynolds equation is:
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Figure 1 Instantaneous position of the rotor within the
bearing

The proposed methodology is performed
by making small perturbations around the
equilibrium position. The fact only considering
small perturbations is necessary because the
equations of motion of rotor-bearings are highly
nonlinear system. For example, consider the
case of a mass 2M rotor supported by two
identical bearings and properly aligned. The
equations of motion are [1]:

M 0] 0% Jacosg| |Wcosg F
0 M|at? |asing| |Wsing [ |F,

Where F, y F, are reaction forces in the
bearings. These equations are highly nonlinear
and even when known W and ¢, as functions

()

of time. The method used to deal with this type
of equations is linearized reaction forces of the
bearings around its equilibrium position. Figure
2 depicts the effect produced by the load
changes on the position of the bearing axis. The
zero subscript refers to Figure steady state
position and AX , Ay indicate the
displacements of the shaft about its equilibrium
position or small displacements of disturbance.
Calculating the change in these small
perturbations with respect to time is obtained
speeds disturbance AX and Ay [3].
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T

Figure 2 rotor position change made by disturbances.

The resulting reaction force F = W of
Figure 2 has components F, and F, . It made

Taylor series expansions of the first order of
these components is obtained:

F =(Fe)o +[0Fx ]OAX+[68F; j Ay+[aFx ]OASH-(GFX ] Ay (6)

o x ay

3 7
() e ) () e )y D)
0 0 ox 0 ay 0

OX oy

The Y-axis direction is chosen such that
(Fy), =0. Note that the partial derivatives of

the forces with respect to the position and
velocity, respectively represent the stiffness and
damping in the lubricant film; then you can
write:

ok, oF.
S
0 Y Jo
F
(%) “ %)
0 Y Jo
c :[a':vj _ oF,
" X Jg 7oy ),

This allows the equations (6) and (7) can
be written as:
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Therefore, once the motion equations are
linearized, they can easily solve the linearized
after determining coefficients , and c;.

(8)

In the Cartesian coordinate system, the
forces in the lubricant film are written as [4]:

L2 ¢, Lo~ ~
Fy =_L/2J‘51 pRsin&dédz

)

F, :J'f:/zz.[;z pRcosfd@ dz (10)
In dimensionless form it can be written:

_ Fy lpd s (11)
Fy = NLD(RICY 4L.[§1 psin@dodz

= F 1, .~ ~ 12
FE=——Y =Z| |."pcosédadz ( )
¥ UNLD(R/C)? 4“01 P

To enter the effect of disturbance, note
that in Figure 2 the position of the stump and
the steady state position when there is
associated a small perturbation. This can be
quantified as:

e, Sing, + Ax =esin ¢
g, C0S@, + Ay = ecosg

(13)

Substituting the above expressions into
equation film thickness (2) and whereas s =e/C
and h=H/C dimensionless film thickness is
obtained.
h=h, + AX sin @ + AY cos@ (14)
Where:

h, =1+&,c05@0 —¢,), X =x/C y Y =yIC.
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It derives equation (14) with respect to
time yields:

% = w(AX'sin @ + AY 'cosé) (15)

Note that =t and raw indicate the

change fromz. Thus, to calculate the
equilibrium conditions and the coefficients of
the lubricant film, it is necessary to solve the
Reynolds equation (4), subject to the boundary
conditions given and disturbing with (14) and
(15).

General methodology

Now the description of the methodology used
in solving the Reynolds equation is performed
by disturbances. Since the analysis is linear, the
pressure in the oil film can be expressed as:

op aop op) .. . [Op .
p=(p) +(O—J Ax+(—j Ay+[—.j Ax+(—_] Ay
A 3y ), X ), oy ),

(16)

Doing:

=py [P} s [Py, [9P) .,
(p)o Po (axjo—px [ayjo py (6)‘()0 Px

o) _
(avl P

The components of force in the bearings
are by integrating the pressure on the bearing
area, so we can write:
sind (17)

Fx . .
{F }—!!(po + P, AX+ P,AY + PAX+ pyAy){cos‘§

Y

}Rldédz

The terms of disturbance ax, ay, ax and
Ay are independent of integration variables,
therefore, for (17):

0 | _|[f pssindRdzde (18)
(R ”g P, COsOR,dzdd
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{kxx kxy}_ J;l p, sin9iR1d2d5~ }[! p, sin§~Rldzd0: %(hj a(%xj*[sz Fz[h aapzxj
ky K _!! p, cosd R,dzd& _!"9[ p, cosé R,dzd@ :12”0557%(%5 sin ~C:a%))’[%jz aa [ahz sin gapoj
(19) By [hg Z’Z]*[?) a%(hg 136[5;):
0 2 o DY @ 2 o
. . II o, SinéRledé II py sin§R1dzd§ :—12;r5|n9——§(3h cosd p J fj —(3h cosd p j
XX wl_J% 7 [ 2 =
{ny ny}_ J'f p, cosd R, dzdd “o' P, cos R, dzdd %[hg a;g j*(%] %[hg 652 ] 2zsing
6 z6
(20) %(hj a(;g}r[%j a%(hg 0 S ] 24700

To determine the coefficients k; and
C;; » you need to get disturbances pressure field

first. Substituting the equations of disturbed
film (14), (15) and (16) in the Reynolds
equation (4) yields:

a

Dé[(h +AXsing +AY cosﬁ) (pD +PxAX + PyAY + Py AX'+ P, AY )}

+

2
D ; 5o = = fm Ay
(Tj E{(h‘, +AXsing +AY t:osf))a(,}—j(pU + Py AX + PyAY + Py AX' + Py AY )}

:127:%(hU +AXsing +AY cos§) +247(AX'sin 0+ AY'cos@)

21)

Developing the term (n 4 axsing + AY cosd)?

and removed the higher-order terms, the
Reynolds equation is obtained with only first-
order terms.

%[(hj +3h2sin 6 AX +3h? cos§AY)%(bn + Py AX + Py AY + By AX + B, AY ')}

D

2 A - - -~
+(9) 21 (hg +32 sinGAX +302 cOsTAY) (B, + By AX + By AY + Py AX+ B AY")
L) oz 0z

:12”%(h0 +AXSiNG +AY c0s8) + 247 (AX'sin @ + AY'cosd)
O

(22)

Bringing terms of the order is obtained the
following set of equations:

2
[h apo){i] he 9P| _12, %M
00 L) ozl ° oz Py,

(23)
The second and third terms on the right

side of the second of the above equations can be
written as:

A 2
i(3h§ sin 5%}[9) 9 3hZsin goP
el L) oz oz
_ a~ 3 ,sin g 6[;10 +[ )2 0 3 3sin@'a&
o0 h 00 ) \L)az\"° h, oz

=3sin§ i(hgalf]+(9]zi hg% +3h§%i sin @
h, |08\ °ad ) \L) oz| ® oz 20 20\ h,

Therefore:

° (3h2 sin @ 6p°j (Ej (?,h2 sin @ 2P0 J:
] L oz
”ahg (Ssm 6’} 3hg 30P, O [sin 9’}
20 ( h, 20 o0\ h,
Equal to the second and third terms on the

right side of the third of the preceding
equations:

2
o 3hZ cosd 9P + o 3hZ cosd 9P
EY:d bl L) oz o0z

12x ﬂ 3cosd +3hga%i~ cos@
00 | h, 00 00\ h,

Thus, the following set of equations is
obtained for the pressure field and the steady
state pressure field gradients.

i( ap°}+[ j b 9P | _19, o
a0\ " o0 ) \L) oz\ ° oz 30
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2 )
S o)
00 o0 L) oz oz
—127] cosg — 3¢ % —ShSéL"i sin 9
h, 00 20 o0 | h,
g(h30@j+[2)21(hgapv J:
o0 o0 L) oz oz

Scose oh(,] s o 0 [cos?)
7 ° 80

=127 sin § + ==~
2

ol HEJ

06 00 L

) [LJZE[hsﬁm):mg (24)

00

D
N\‘QJ
/
=
S
D

The boundary conditions associated
with the system of equations given by (24) will
be:

p =0 IN z=4+1/2; Where 1-0,xyxy

%:O |n Z:O;
oz

where | =o,x,y, %y

Importantly for the aerodynamic
coefficients through gradients , , p,, p, and p,

, you need to calculate the first steady-state
pressure p,. The accuracy when calculating

p, lead to the accuracy of the values of the
dynamic coefficients.

Short Chumacera Case Analysis

To verify that the pressure field disturbances
lead to correct numeric results dynamic
coefficients for the case of infinitely short
bearings are calculated.

Consider the two assumptions for short
bearings made by Dubios and Ocvirk [5]. First,
the pressure gradients in the x or 6 are
negligible when compared to the pressure
gradients in the direction z (axial direction).
Second, only the pressure in the convergent
region clear (0 < @ < 7x) It is considered for
evaluating forces lubricant film.
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Therefore, in the case of short bearings,
equations (24) reduce to the following

expressions.(g) 2 (2 2P, L ohy
L) oz oz 69

, -
(EJ i he 9 X | =127] cosé—Ssme %
L) oz z h, o6
) -
(E) i hd 0 Y |=—127] sin @ + 3cosf %
L) oz z h, 06

2 —
(Bj a(hg P j = 247sin0
L) oz oz
2
(Ej i hga Y | =247 cosO
L) oz Z

(25)

Note that the right side of the above
equations is independent of the steady-state
pressure p,, as if it was in the system (24) for

general bearings.

Integrating  twice each of these
equations and boundary conditions using
established:

2 2
=D (E) 12
2n' (D 00
2 2 N -
Py = (z _31) (LJ 124 cos — 359 Mo
2 (D h, 00

s 2 _ ~
p, =Y [Lj 12| sin 3 + 3050 Ty
2 (D h, o6

Py = (Zthl)( j[247rsm:9]

(26)

Py = (Z2h_31)( J[247zcos¢9]

Known p, and pressure gradients, the
reaction forces and dynamic coefficients are

calculated. In dimensionless form can be
written:

F, :%fl_[jw P, sinddodz F, =%f1f:” P, cosfdodz

_ 1 pper . ~ _ 7_ll¢+«7,.~ _
k”:ZLL P, sinddodz kW_ZLL P, sin@dodz

Ky = %J:j:w Py cosddadz  k,, = %J:J.:M p, c0s0dodz
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6= 2L [ Pesinddodz ¢, =5[\["p,sinddodz

_ 1@ ppen ~ _ 1 poen ~ =~
yx=ZLL Py COs#dAdz VV:ZLL py- cosédfdz

Results

Evaluating each of these integrals it is obtained
for the forces in the lubricant:

,I J'W”(Z _1)[ jlz ﬂ3|n¢9d6?dz
D 06

20
_ _2,,[Lj
D

- 27{%) j”%sm(ew)de

0 (1+&cosH)
LY e 2e%
= 27{5) {2(1_52)3/2 COS¢— &) sin 4 =

-2 2 ~ ~
F, :EJ’l J'“’ (z 31) (Lj 1272 cosddddz
2l e (D) T ah

LY —2&? e .
_2;{ ){(1 2)zc S¢p— 2(1—52)3’25"]4

- ﬂ[ij J166% + 22 (1-£?)

(1-£?)2\D

27)

rﬁwr%sin@
¢ 00 h

(28)

Dynamic stiffness  coefficients are
obtained as follows:

P 2 _
Ky :lf J‘M @ _31)[£j 127 cosé — 3sin g o, sinddddz
43% 2nd \D h, 00

LY 2e e 3s? ) (l+5)
2”( j|:(1 2)? 059 201-¢£%)%"? singcosg -+ 1—&7y? sin ¢i|

B [sz 4e 272 +(16-72)e?
(1-£%)? 166% + 7% (1-&?)

(29)
& =2l Z;hf (D) {—12/1[9 nd + 3°§59 aZ Hsmﬁdﬁdz
h O
rl+28%) 2¢(1+3¢? )i
272( 1{2(1 52)5“ 0S¢+ (1—52)3 ingcos¢g — 2= 2)3/2¢|n 4
B (sz 1 -z +27%6 +(16-77)e’]
B 1-¢£%)*"2 1652 + 72 (1- &%)
(30)
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2 -~
—f '[M(Z ;1)[ ] 127 cos - 30 Mo |0 554z
2h, ho 20

oL 2 7 2 26(14387%) 71+2:%) .,
,Zn[Dj {2(1752)312 cos® ¢+ a7y sin ¢ cosgp + 2 2)Msm 4
- zn[sz alx? +(32+7%)e’ +2(16 — 72)e"]

D 20—%)%?[16s° + 22 (1-£?)]

€2))

77] r‘ (2 ‘31)( j 12| sind +36%0 Mo || cosFddaz
D h, 00

0

4g(1 3w’ 2 2
=2 [ j{ e+ e )cos ¢+ f;)w c|n;zﬁcos¢+(17::2)z sin 4

1-¢g%)° 21
_ ( ) 4e[n® +(32+7%)e? +2(16 — 7%)e’]
=
D (1-£?)°[166% + 72 (1—£2)]

(32)
Damping coefficients are:

w1l j“’"(zzzhgl)( j[247rsm19]5|n9d9dz

LY . 4e . 1+2
47{ j [2(1 Z ay oS’ ¢—(17;)2 sm¢cos¢+272 + 2‘;,)2 sin 4

— o4 ( jz alx? +2(n* -8)e?]
(1-&?)*?[16s% + 72 (1-&%)]

(33)

C, =C,, :lf J‘:” Z;hgl)( J [24ncos:9]sm fdodz

_ ”(LJZ 8e[x? +2(x? —-8)e’]
“TUD) [(@-e®)?[6e? + 21— £7)]

(34)

’*I r (Z;hll)(Dj [p47cosd|cosidddz

1+2 . .
_4z(D) {”( +26%) cos? g+ 2smqﬁcos¢+ﬁsmz¢}

4,
2(1 82)5,2 ( 2)

72”( J aln? +2(24 - 7%)e? + 126t
Q-2 1165 + 21— )]

(35)

Tables 1 and 2 show these coefficients
inthe form i, - (c/w)k, Y §, = (@C/w)c,-
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=T E T O

E = g-x" +2x%2" +(16—x")s"]
sl— 2 [=? +(16—x) ]

_ mr® +(32 + 558" + 26 — 5735

sl £ [x% +(16- )5 T

g
"

_r () ~216-7)E]
{J—E:}[ﬁ: —{J.ﬁ—ﬂ':}f:]: H

7

Table 1 Dynamic stiffness coefficients for a short
bearing.

T 2x(l-&") =7 +2(x" - 8)’]
= E[R_: +{16_E2}E:]5 i

o 8 +2x* -]
T [et+A6-x0)

= _ 8[r° +2(r° -8)"]
" [ﬂ_; N I:lﬁ—ﬂ'ljlé'lf ]

2x[R 224 -7 +atEY]

[
N TPl Sy [ T Tl

Table 2 Dynamic damping coefficients for a short
bearing.

You can view the behavior of these
coefficients as a function of the eccentricity of
balance. In Figures 3 and 4 the damping and
stiffness variations appear; the dashed curves
correspond to negative values of the coefficient.
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Figure 3 aerodynamic coefficients for a short Chumacera
stiffness.

Figure 4 aerodynamic damping coefficients for a short
Chumacera.

As noted, the coefficients obtained for
the classical case are the same as they find
alternatives [3] methodologies [4], [10];
meaning that the alternate method produces
consistent results.

Conclusions

After showing the validity of this alternative
solution, you might expect the perturbation
technique can be used in more complex analysis
that may involve external excitations in the
bearings, the eternal problem of misalignment
in the stands, and an option to open external
pressurization ports lubricant.
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Currently there are rough on some of
these issues results but the perturbation
technique can be adapted to become a
numerical-analytical methodology to find
rotordynamic coefficients as a function of
misalignment and external pressurization
bearings of any length.
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